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Exercise series 1, with solutions 2021–09–28

Convention: We understand a subset of a topological space to be automatically endowed with the subspace

topology and a product of topological spaces to be endowed with the product topology (unless stated

otherwise).

Exercise 1.1 (Locally Euclidean spaces). Show that the following definition of
“locally Euclidean space” is equivalent to the one given in the lecture notes:

Definition. Let n ∈ N = {0, 1, . . . }. A topological space M is locally Euclidean
of dimension n if every point p ∈M has a neighbourhood that is homeomorphic to
Rn.

Solution. The new Definition clearly implies the Definition of “locally Euclidean”
given in the lecture note as Rn is an open subset of Rn. Conversely, for every
p ∈ M , there are a neighborhood U and a homeomorphism ϕ s.t. ϕ(U) is an open
subset of Rn. Then we can find a ball B(ϕ(p), r) ⊆ ϕ(U) ⊆ Rn for some r > 0.

Let us consider the map ψ : B(ϕ(p), r) → Rn given by ψ(x) := x−ϕ(p)
r−‖x−ϕ(p)‖ . One

can verify that ψ is a homeomorphism with inverse ψ−1(y) := ϕ(p) + y
1+‖y‖ . Set

U ′ := ϕ−1(B(ϕ(p), r)) ⊆ M , which is a neighborhood of p in M and the map
θ := ψ ◦ ϕ : U ′ → Rn. We showed that θ is a homeomorphism since ψ and ϕ are
both homeomorphisms. �

Exercise 1.2 (Examples of locally Euclidean spaces). Which of the following spaces
are locally Euclidean? Which are (globally) homeomorphic to Euclidean space?

• an open ball in Rn, n ∈ N
Solution. BR(0) = {x ∈ Rn : |x| < R} is globally homeomorphic to Rn. And
the homeomorphism ϕ(x) = R x

1+‖x‖ maps Rn into BR(0). Observe that

ϕ−1(x) = x
R−‖x‖ . �

• the closed interval [0, 1] ⊂ R
Solution. The interval [0, 1] is neither locally nor globally homeomorphic to
R. Global homeomorphism is excluded since [0, 1] is compact but R is not.
A continuous map will map a compact set to a compact set. Next, suppose,
for a contradiction, that [0, 1] is locally homeomorphic to R and denote by
ϕ the homeomorphism. Take one of the extrema (e.g. 0 or 1) of the interval
and consider an open neighborhood in the subspace topology: U = [0, ε) for
example. U is connected and open hence ϕ(U) is connected and open as
well. Furthermore (0, ε) is still open and connected but its image through ϕ
is not connected because we remove ϕ(0). �

• the circle S1 ⊂ R2

Solution. S1 is locally homeomorphic to R. In fact denote S1 = {(x, y) ∈
R2 : x2 + y2 = 1}, and define the nord and south stereographic projections
as

p± : S1 \ {(0,±1)} → R

(x, y) 7→ x

1∓ y
It is not difficult to verify that for every point p ∈ S1 there exists an open
set U containing p, such that the image of U via one of the two stereographic
projections is an open set in R. �

• the zero set of the function f : R2 → R, f(x, y) = xy

Solution. The set E = {(x, y) ∈ R2 : xy = 0} is not locally Euclidean
because no neighborhood U of the origin in E is homeomorphic to R. To
prove this last statement argue by contradiction: suppose that there exist
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an homeomorphism ϕ : U → R. Then U ′ = U \ {(0, 0)} has at least 4
connected components while ϕ(U ′) has just 2 connected components. The
contradiction arises from the fact that a homeomorphism preserves connected
components. �

• the “corner” {(x, y) ∈ R2 | x, y ≥ 0, xy = 0}.
Solution. The set E{(x, y) ∈ R2

+ : xy = 0} is globally homeomorphic to R
via the homeomorphism

ϕ : E → R

(x, y) 7→

{
x if y = 0

−y if x = 0

�

Exercise 1.3 (“The line with two origins”). Let X := {±1} × R and let M be the
quotient of X by the equivalence relation generated by (1, x) ∼ (−1, x) iff x ∈ R\{0}.
We endow M with the quotient topology. Show that M is locally Euclidean and
second countable, but not Hausdorff.

Solution. Denote π : X →M the quotient map (i, x) 7→ [(i, x)].

The two “origins” are the equivalence classes of the points (i, 0) ∈ X (for i = ±1);
these classes have just one element each and we denote them 0i = [(i, 0)] = {(i, 0)} ∈
M . In contrast, the equivalence class of any other point (i, x) ∈ X with x 6= 0 is
the two-point set x̃ = [(i, x)] = {(1, x), (−1, x)} ∈ M . Therefore M is the set of
equivalence classes

M = X /∼ = {0+} ∪ {0−} ∪ {x̃}x 6=0.

The space M is locally Euclidean of dimension 1 because it is the union of two
open sets Ri = {[(i, x)] ∈ M : x ∈ R} (for i = ±1), each of which is homeomorphic
to R via the map

R→ Ri : x 7→ [(i, x)].

To see that the sets Ri are open in the quotient topology, note that π−1(Ri) = X\0−i,
which is open in X.

Moreover, M is second countable because it is the union of two second countable
open subsets, namely, the sets Ri.

Finally M is not Hausdorff since every pair of open subsets containing 0− and 0+
respectively have non-empty intersection. �

Exercise 1.4 (New manifolds from old). Convince yourself that1:

(a) A subset of a Hausdorff (resp. second countable) topological space is a
Hausdorff (resp. second countable) space.

Solution. Let S ⊂ X be a subset of a topological space X.
If X is Hausdorff, to show that S is Hausdorff as well, take two distinct

points p, q ∈ S. Let U, V be disjoint neighborhoods of p, q in X. Then the
sets U ′ = U ∩ S, V ′ = V ∩ S are disjoint open neighborhoods of p, q in S.

If X is second countable, let {Ui}i∈I be a countable basis. Then {Ui∩S}i∈I
is a countable basis for S. Thus S is also second-countable. �

(b) An open subset of a topological n-manifold is a topological n-manifold.

Solution. Let S ⊂M be an open set. Then ∀p ∈ S, we can find a neighbor-
hood U ⊂M that is homeomorphic to an open set V ⊆ Rn. Let ϕ : U → V
be a homeomorphism. Since S is open in M , thus U ∩ S is also open in
U . Therefore ϕ(U ∩ S) is open in V (and thus, in Rn), and the restricted
map ϕ : U ∩ S → ϕ(U ∩ S) is a homeomorphism. This shows that S is
locally Euclidean. The Hausdorff and second countablity properties of S
follow by (a). �

1This means that if you find the exercise trivial you don’t have to write down a detailed proof.
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(c) The product of two Hausdorff (resp. second countable) spaces is Hausdorff
(resp. second countable).

Solution. Let us show that the product of two Hausdorff spaces X0, X1 is
Hausdorff as well. Let x = (x0, x1), y = (y0, y1) be two distinct points in
X0 ×X1. We assume w.l.o.g. that x0 6= y0 in X0. Then we can find disjoint
open sets U, V ⊂ X0 s.t. x0 ∈ U and y0 ∈ V . Then the sets U ×X1, V ×X1

are disjoint neighborhoods of x and y. These sets are open in the product
topology, therefore the product space X × Y is Hausdorff.

For second-countable spaces X and Y , let {Ui}i∈I , {Vj}j∈J be respective
countable bases. Then {Ui × Vj}i∈I,j∈J is a countable basis of X × Y . �

(d) The product of two topological manifolds is a topological manifold. What is
its dimension?

Solution. LetM , N be topological manifolds of dimensionsm, n respectively.
Let us show that M × N is a locally Euclidean of dimension m + n. (The
Hausdorff and second countability properties follow by (c), thus we conclude
that M ×N is a topological (m+ n)-manifold.)

For every (p, q) ∈ M × N , we can find open neighborhoods U ⊂ M ,
V ⊆ N of p and q that are respectively homeomorphic to Rm and Rn. It
follows that the set U × V (which is an open neighborhood of (p, q) in the
product topology) is homeomorphic to Rm+n. �

Exercise 1.5 (Projective space). We define Pn as the quotient space of Rn+1\{0}
by the equivalence relation x ∼ y iff x = λy for some λ ∈ R.

Show that Pn, endowed with the quotient topology, is a topological manifold.
Hint: For x ∈ Rn+1\{0} let [x] denote its equivalence class in Pn.

To show that Pn is locally Euclidean consider for i = 0, 1, . . . , n the sets

Ui := {[x] ∈ Pn | xi 6= 0}

and the coordinate chart on Ui:

ϕi : Ui → Rn : [(x0, . . . , xn)] 7→
(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.

Solution. We will prove several facts

(i) The quotient map π : Rn+1
6=0 → Pn is open. Let U ⊆ Rn+1

6=0 be an open set. To

see that π(U) is open in the quotient topology, we verify that its preimage
π−1(π(U)) =

⋃
λ6=0 λU is open, being a union of open sets λU .

(ii) Pn is second countable. Cleary Rn+1
6=0 is second countable, being a subspace

of the countable space Rn+1. Let (Wj)j∈N be a countable topological basis

for Rn+1
6=0 . Then (π(Wj))j∈N is a countable basis for Pn, being the image of

a topological basis by a surjective open map.
(iii) Pn is locally homeomorphic to Rn. To see that Ui is open in the quotient

topology, we verify that its preimage π−1(Ui) is open in Rn+1
6=0 . And indeed,

its preimage is the set

Vi = {x ∈ Rn+1
6=0 : xi 6= 0},

which is open. To see that ϕi is a bijection, let’s find its inverse function. A
direct calculation provides us with the formula

ϕ−1i (x0, . . . , xn−1) = [x0, . . . , xi−1, 1, xi, . . . , xn].

This formula also shows that ϕ−1i is continuous. Finally, to see that ϕi itself
is continuous, it suffices to note that the composite map

ϕ̃i = ϕi ◦ π|Ui
Vi

: Vi → Rn

is continuous. (Here we are using the universal property of the quotient. The

map π|Ui
Vi

is a quotient map because it is surjective and open.) And indeed,
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the map

ϕ̃i(x0, . . . , xn) =

(
x0
xi
, . . . ,

xi−1
xi

,
xi+1

xi
, . . . ,

xn
xi

)
is continuous. Thus ϕi is a homeomorphism between the open set Ui ⊆ Pn
and Rn.

(iv) Pn is Hausdorff. Let [x], [y] be two distinct points of Pn. We will show there
are disjoint open neighboorhoods U, V of x, y in Rn+1

6=0 that are saturated

by the equivalence relation ∼. Then it follows that π(U), π(V ) are disjoint
respective neighorhoods of [x], [y] in Pn.

We consider two cases. The first case is when both points x, y have a
nonzero coordinate at the same place, i.e. xi, yi 6= 0 for some i. Then the
points [x], [y] are contained in the open subset Ui, which is homeomorphic
to Rn, hence Hausdorff. Thus there are disjoint open neighborhoods V,W
of [x], [y] in Ui, and these sets are also open in Pn.

The remaining case is when there is no i such that xi, yi 6= 0. In this case
let i, j such that xi 6= 0 (hence yi = 0) and yj 6= 0 (hence xj = 0). Then we

have in Rn+1
6=0 the saturated open sets

V = {z ∈ Rn+1
6=0 : |zi| > |zj |}

W = {z ∈ Rn+1
6=0 : |zj | > |zi|}

which are disjoint neighborhoods of x and y respectively.

�

Exercise 1.6. Show that the torus Tn = Rn/Zn, defined as the quotient of Rn by
the equivalence relation

x ∼ y ⇐⇒ y − x ∈ Zn,

is a topological n-manifold.

Solution. Let π : Rn → Tn be the quotient map

x 7→ [x] = {x+ z : z ∈ Zn}.

Note that two points x, y of Rn are in the same equivalence class if and only if the
coordinates xi, yi coincide modulo 1 for each i. (In other words, the real numbers
xi, yi have the same integer part.)

(1) π is an open map. Indeed, let U ⊆ Rn be an open set. To see that π(U)
is open in the quotient topology, we verify that its preimage π−1(π(U)) =⋃
z∈Zn U + {z} is open, being a union of translate copies of U .

(2) Tn is second countable. Indeed, the image of any (countable) topological
basis by a surjective open map is a (countable) topological basis.

(3) To prove that Tn is locally Euclidean, we show that:
The quotient map π is locally injective, i.e., each point x ∈ X has an open
neighborhood U where the quotient map π is injective. Indeed, let U be an
open neighborhood of x with diameter < 1. Then there are no two different
points x′, x′′ ∈ U such that x′′ − x′ ∈ Zn. Therefore π is injective on U .
Furthermore, the set π(U) is open in Tn, and the restricted quotient map
π : U → π(U) is a homeomorphism because it is bijective and open. This
proves that the Tn is locally Euclidean of dimension n.

(4) Tn is Hausdorff. Take two different points π(x), π(y) ∈ Tn. Then there is
some i such that the coordinates xi, yi are different modulo 1. Let ε > 0
be the distance between the numbers xi, yi taken modulo 1, that is, ε =
minz∈Z yi−(xi+z). This number is the least we would have to move yi so that
it coincides with xi modulo 1. Then the Euclidean open balls U = B(x, ε2),
V = B(y, ε2) satisfy π(U) ∩ π(V ) = ∅ because for every pair of points in U
and V , their i-th coordinates do not coincide modulo 1. The sets π(U), π(V )
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are disjoint open neighborhoods of π(x), π(y), as needed to show that Tn is
Hausdorff.

�
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