Introduction to Differentiable Manifolds	
EPFL – Fall 2021	M. Cossarini, B. Santos Correia
Exercise series 1, with solutions	2021 - 09 - 28

Convention: We understand a subset of a topological space to be automatically endowed with the subspace topology and a product of topological spaces to be endowed with the product topology (unless stated otherwise).

Exercise 1.1 (Locally Euclidean spaces). Show that the following definition of "locally Euclidean space" is equivalent to the one given in the lecture notes:

Definition. Let $n \in \mathbb{N} = \{0, 1, ...\}$. A topological space M is **locally Euclidean** of dimension n if every point $p \in M$ has a neighbourhood that is homeomorphic to \mathbb{R}^n .

Solution. The new Definition clearly implies the Definition of "locally Euclidean" given in the lecture note as \mathbb{R}^n is an open subset of \mathbb{R}^n . Conversely, for every $p \in M$, there are a neighborhood U and a homeomorphism φ s.t. $\varphi(U)$ is an open subset of \mathbb{R}^n . Then we can find a ball $B(\varphi(p), r) \subseteq \varphi(U) \subseteq \mathbb{R}^n$ for some r > 0. Let us consider the map $\psi : B(\varphi(p), r) \to \mathbb{R}^n$ given by $\psi(x) := \frac{x - \varphi(p)}{r - \|x - \varphi(p)\|}$. One can verify that ψ is a homeomorphism with inverse $\psi^{-1}(y) := \varphi(p) + \frac{y}{1 + \|y\|}$. Set $U' := \varphi^{-1}(B(\varphi(p), r)) \subseteq M$, which is a neighborhood of p in M and the map $\theta := \psi \circ \varphi : U' \to \mathbb{R}^n$. We showed that θ is a homeomorphism since ψ and φ are both homeomorphisms.

Exercise 1.2 (Examples of locally Euclidean spaces). Which of the following spaces are locally Euclidean? Which are (globally) homeomorphic to Euclidean space?

• an open ball in $\mathbb{R}^n, n \in \mathbb{N}$

Solution. $B_R(0) = \{x \in \mathbb{R}^n : |x| < R\}$ is globally homeomorphic to \mathbb{R}^n . And the homeomorphism $\varphi(x) = R \frac{x}{1+||x||}$ maps \mathbb{R}^n into $B_R(0)$. Observe that $\varphi^{-1}(x) = \frac{x}{R-||x||}$.

• the closed interval $[0,1] \subset \mathbb{R}$

Solution. The interval [0, 1] is neither locally nor globally homeomorphic to \mathbb{R} . Global homeomorphism is excluded since [0, 1] is compact but \mathbb{R} is not. A continuous map will map a compact set to a compact set. Next, suppose, for a contradiction, that [0, 1] is locally homeomorphic to \mathbb{R} and denote by φ the homeomorphism. Take one of the extrema (e.g. 0 or 1) of the interval and consider an open neighborhood in the subspace topology: $U = [0, \varepsilon)$ for example. U is connected and open hence $\varphi(U)$ is connected and open as well. Furthermore $(0, \varepsilon)$ is still open and connected but its image through φ is not connected because we remove $\varphi(0)$.

• the circle $S^1 \subset \mathbb{R}^2$

Solution. S^1 is locally homeomorphic to \mathbb{R} . In fact denote $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$, and define the nord and south stereographic projections as

$$p_{\pm}: S^1 \setminus \{(0, \pm 1)\} \rightarrow \mathbb{R}$$

 $(x, y) \mapsto \frac{x}{1 \mp y}$

It is not difficult to verify that for every point $p \in S^1$ there exists an open set U containing p, such that the image of U via one of the two stereographic projections is an open set in \mathbb{R} .

• the zero set of the function $f : \mathbb{R}^2 \to \mathbb{R}, f(x, y) = xy$

Solution. The set $E = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$ is not locally Euclidean because no neighborhood U of the origin in E is homeomorphic to \mathbb{R} . To prove this last statement argue by contradiction: suppose that there exist an homeomorphism $\varphi : U \to \mathbb{R}$. Then $U' = U \setminus \{(0,0)\}$ has at least 4 connected components while $\varphi(U')$ has just 2 connected components. The contradiction arises from the fact that a homeomorphism preserves connected components. \Box

• the "corner" $\{(x,y) \in \mathbb{R}^2 \mid x, y \ge 0, xy = 0\}$. Solution. The set $E\{(x,y) \in \mathbb{R}^2_+ : xy = 0\}$ is globally homeomorphic to \mathbb{R} via the homeomorphism

$$\begin{aligned} \varphi : E &\to \mathbb{R} \\ (x, y) &\mapsto \begin{cases} x & \text{if } y = 0 \\ -y & \text{if } x = 0 \end{cases} \end{aligned}$$

Exercise 1.3 ("The line with two origins"). Let $X := \{\pm 1\} \times \mathbb{R}$ and let M be the quotient of X by the equivalence relation generated by $(1, x) \sim (-1, x)$ iff $x \in \mathbb{R} \setminus \{0\}$. We endow M with the quotient topology. Show that M is locally Euclidean and second countable, but not Hausdorff.

Solution. Denote $\pi: X \to M$ the quotient map $(i, x) \mapsto [(i, x)]$.

The two "origins" are the equivalence classes of the points $(i, 0) \in X$ (for $i = \pm 1$); these classes have just one element each and we denote them $0_i = [(i, 0)] = \{(i, 0)\} \in M$. In contrast, the equivalence class of any other point $(i, x) \in X$ with $x \neq 0$ is the two-point set $\tilde{x} = [(i, x)] = \{(1, x), (-1, x)\} \in M$. Therefore M is the set of equivalence classes

$$M = X /_{\sim} = \{0_+\} \cup \{0_-\} \cup \{\tilde{x}\}_{x \neq 0}.$$

The space M is locally Euclidean of dimension 1 because it is the union of two open sets $\mathbb{R}_i = \{[(i, x)] \in M : x \in \mathbb{R}\}$ (for $i = \pm 1$), each of which is homeomorphic to \mathbb{R} via the map

$$\mathbb{R} \to \mathbb{R}_i : x \mapsto [(i, x)]$$

To see that the sets \mathbb{R}_i are open in the quotient topology, note that $\pi^{-1}(\mathbb{R}_i) = X \setminus 0_{-i}$, which is open in X.

Moreover, M is second countable because it is the union of two second countable open subsets, namely, the sets \mathbb{R}_i .

Finally M is not Hausdorff since every pair of open subsets containing 0_{-} and 0_{+} respectively have non-empty intersection.

Exercise 1.4 (New manifolds from old). Convince yourself that¹:

(a) A subset of a Hausdorff (resp. second countable) topological space is a Hausdorff (resp. second countable) space.

Solution. Let $S \subset X$ be a subset of a topological space X.

If X is Hausdorff, to show that S is Hausdorff as well, take two distinct points $p, q \in S$. Let U, V be disjoint neighborhoods of p, q in X. Then the sets $U' = U \cap S$, $V' = V \cap S$ are disjoint open neighborhoods of p, q in S.

If X is second countable, let $\{U_i\}_{i \in I}$ be a countable basis. Then $\{U_i \cap S\}_{i \in I}$ is a countable basis for S. Thus S is also second-countable.

(b) An open subset of a topological *n*-manifold is a topological *n*-manifold.

Solution. Let $S \subset M$ be an open set. Then $\forall p \in S$, we can find a neighborhood $U \subset M$ that is homeomorphic to an open set $V \subseteq \mathbb{R}^n$. Let $\varphi : U \to V$ be a homeomorphism. Since S is open in M, thus $U \cap S$ is also open in U. Therefore $\varphi(U \cap S)$ is open in V (and thus, in \mathbb{R}^n), and the restricted map $\varphi : U \cap S \to \varphi(U \cap S)$ is a homeomorphism. This shows that S is locally Euclidean. The Hausdorff and second countablity properties of S follow by (a).

¹This means that if you find the exercise trivial you don't have to write down a detailed proof.

(c) The product of two Hausdorff (resp. second countable) spaces is Hausdorff (resp. second countable).

Solution. Let us show that the product of two Hausdorff spaces X_0 , X_1 is Hausdorff as well. Let $x = (x_0, x_1)$, $y = (y_0, y_1)$ be two distinct points in $X_0 \times X_1$. We assume w.l.o.g. that $x_0 \neq y_0$ in X_0 . Then we can find disjoint open sets $U, V \subset X_0$ s.t. $x_0 \in U$ and $y_0 \in V$. Then the sets $U \times X_1$, $V \times X_1$ are disjoint neighborhoods of x and y. These sets are open in the product topology, therefore the product space $X \times Y$ is Hausdorff.

For second-countable spaces X and Y, let $\{U_i\}_{i \in I}$, $\{V_j\}_{j \in J}$ be respective countable bases. Then $\{U_i \times V_j\}_{i \in I, j \in J}$ is a countable basis of $X \times Y$. \Box

(d) The product of two topological manifolds is a topological manifold. What is its dimension?

Solution. Let M, N be topological manifolds of dimensions m, n respectively. Let us show that $M \times N$ is a locally Euclidean of dimension m + n. (The Hausdorff and second countability properties follow by (c), thus we conclude that $M \times N$ is a topological (m + n)-manifold.)

For every $(p,q) \in M \times N$, we can find open neighborhoods $U \subset M$, $V \subseteq N$ of p and q that are respectively homeomorphic to \mathbb{R}^m and \mathbb{R}^n . It follows that the set $U \times V$ (which is an open neighborhood of (p,q) in the product topology) is homeomorphic to \mathbb{R}^{m+n} .

Exercise 1.5 (Projective space). We define \mathbb{P}^n as the quotient space of $\mathbb{R}^{n+1}\setminus\{0\}$ by the equivalence relation $x \sim y$ iff $x = \lambda y$ for some $\lambda \in \mathbb{R}$.

Show that \mathbb{P}^n , endowed with the quotient topology, is a topological manifold. *Hint:* For $x \in \mathbb{R}^{n+1} \setminus \{0\}$ let [x] denote its equivalence class in \mathbb{P}^n .

To show that \mathbb{P}^n is locally Euclidean consider for i = 0, 1, ..., n the sets

$$U_i := \{ [x] \in \mathbb{P}^n \mid x_i \neq 0 \}$$

and the coordinate chart on U_i :

$$\varphi_i: U_i \to \mathbb{R}^n: [(x_0, \dots, x_n)] \mapsto \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

Solution. We will prove several facts

- (i) The quotient map $\pi : \mathbb{R}_{\neq 0}^{n+1} \to \mathbb{P}^n$ is open. Let $U \subseteq \mathbb{R}_{\neq 0}^{n+1}$ be an open set. To see that $\pi(U)$ is open in the quotient topology, we verify that its preimage $\pi^{-1}(\pi(U)) = \bigcup_{\lambda \neq 0} \lambda U$ is open, being a union of open sets λU .
- (ii) \mathbb{P}^n is second countable. Cleary $\mathbb{R}^{n+1}_{\neq 0}$ is second countable, being a subspace of the countable space \mathbb{R}^{n+1} . Let $(W_j)_{j\in\mathbb{N}}$ be a countable topological basis for $\mathbb{R}^{n+1}_{\neq 0}$. Then $(\pi(W_j))_{j\in\mathbb{N}}$ is a countable basis for \mathbb{P}^n , being the image of a topological basis by a surjective open map.
- (iii) \mathbb{P}^n is locally homeomorphic to \mathbb{R}^n . To see that U_i is open in the quotient topology, we verify that its preimage $\pi^{-1}(U_i)$ is open in $\mathbb{R}^{n+1}_{\neq 0}$. And indeed, its preimage is the set

$$V_i = \{ x \in \mathbb{R}_{\neq 0}^{n+1} : x_i \neq 0 \},\$$

which is open. To see that φ_i is a bijection, let's find its inverse function. A direct calculation provides us with the formula

$$\varphi_i^{-1}(x_0,\ldots,x_{n-1}) = [x_0,\ldots,x_{i-1},1,x_i,\ldots,x_n]$$

This formula also shows that φ_i^{-1} is continuous. Finally, to see that φ_i itself is continuous, it suffices to note that the composite map

$$\widetilde{\varphi}_i = \varphi_i \circ \pi|_{V_i}^{U_i} : V_i \to \mathbb{R}^n$$

is continuous. (Here we are using the universal property of the quotient. The map $\pi|_{V_i}^{U_i}$ is a quotient map because it is surjective and open.) And indeed,

the map

$$\widetilde{\varphi}_i(x_0,\ldots,x_n) = \left(\frac{x_0}{x_i},\ldots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\ldots,\frac{x_n}{x_i}\right)$$

is continuous. Thus φ_i is a homeomorphism between the open set $U_i \subseteq \mathbb{P}^n$ and \mathbb{R}^n .

(iv) \mathbb{P}^n is Hausdorff. Let [x], [y] be two distinct points of \mathbb{P}^n . We will show there are disjoint open neighboorhoods U, V of x, y in $\mathbb{R}^{n+1}_{\neq 0}$ that are saturated by the equivalence relation \sim . Then it follows that $\pi(U), \pi(V)$ are disjoint respective neighborhoods of [x], [y] in \mathbb{P}^n .

We consider two cases. The first case is when both points x, y have a nonzero coordinate at the same place, i.e. $x_i, y_i \neq 0$ for some *i*. Then the points [x], [y] are contained in the open subset U_i , which is homeomorphic to \mathbb{R}^n , hence Hausdorff. Thus there are disjoint open neighborhoods V, Wof [x], [y] in U_i , and these sets are also open in \mathbb{P}^n .

The remaining case is when there is no *i* such that $x_i, y_i \neq 0$. In this case let *i*, *j* such that $x_i \neq 0$ (hence $y_i = 0$) and $y_j \neq 0$ (hence $x_j = 0$). Then we have in $\mathbb{R}_{\neq 0}^{n+1}$ the saturated open sets

$$V = \{ z \in \mathbb{R}_{\neq 0}^{n+1} : |z_i| > |z_j| \}$$
$$W = \{ z \in \mathbb{R}_{\neq 0}^{n+1} : |z_j| > |z_i| \}$$

which are disjoint neighborhoods of x and y respectively.

Exercise 1.6. Show that the torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$, defined as the quotient of \mathbb{R}^n by the equivalence relation

$$x \sim y \quad \iff \quad y - x \in \mathbb{Z}^n$$

is a topological n-manifold.

Solution. Let $\pi : \mathbb{R}^n \to \mathbb{T}^n$ be the quotient map

$$x \mapsto [x] = \{x + z : z \in \mathbb{Z}^n\}.$$

Note that two points x, y of \mathbb{R}^n are in the same equivalence class if and only if the coordinates x_i, y_i coincide modulo 1 for each *i*. (In other words, the real numbers x_i, y_i have the same integer part.)

- (1) π is an open map. Indeed, let $U \subseteq \mathbb{R}^n$ be an open set. To see that $\pi(U)$ is open in the quotient topology, we verify that its preimage $\pi^{-1}(\pi(U)) = \bigcup_{z \in \mathbb{Z}^n} U + \{z\}$ is open, being a union of translate copies of U.
- (2) \mathbb{T}^n is second countable. Indeed, the image of any (countable) topological basis by a surjective open map is a (countable) topological basis.

(3) To prove that \mathbb{T}^n is locally Euclidean, we show that:

- The quotient map π is locally injective, i.e., each point $x \in X$ has an open neighborhood U where the quotient map π is injective. Indeed, let U be an open neighborhood of x with diameter < 1. Then there are no two different points $x', x'' \in U$ such that $x'' - x' \in \mathbb{Z}^n$. Therefore π is injective on U. Furthermore, the set $\pi(U)$ is open in \mathbb{T}^n , and the restricted quotient map $\pi: U \to \pi(U)$ is a homeomorphism because it is bijective and open. This proves that the \mathbb{T}^n is locally Euclidean of dimension n.
- (4) \mathbb{T}^n is Hausdorff. Take two different points $\pi(x), \pi(y) \in \mathbb{T}^n$. Then there is some *i* such that the coordinates x_i, y_i are different modulo 1. Let $\varepsilon > 0$ be the distance between the numbers x_i, y_i taken modulo 1, that is, $\varepsilon = \min_{z \in \mathbb{Z}} y_i - (x_i + z)$. This number is the least we would have to move y_i so that it coincides with x_i modulo 1. Then the Euclidean open balls $U = B(x, \frac{\varepsilon}{2})$, $V = B(y, \frac{\varepsilon}{2})$ satisfy $\pi(U) \cap \pi(V) = \emptyset$ because for every pair of points in Uand V, their *i*-th coordinates do not coincide modulo 1. The sets $\pi(U), \pi(V)$

are disjoint open neighborhoods of $\pi(x)$, $\pi(y)$, as needed to show that \mathbb{T}^n is Hausdorff.