
CS-438
Decentralized Systems 
Engineering

Week 2



CS-438: Decentralized 
Systems Engineering
Course Introduction and Basic Concepts



What is a Decentralized System?
An appealing but simplistic definition is a system that works although no one's in 
charge.

More precise definitions:

● Distributed system: a system of multiple computers (nodes) communicating 
over a network.

● Decentralized system: a distributed system in which different nodes or 
subsets of the network are owned or controlled by different people, 
organizations, or interests.

3



Some examples
● Centralized distributed systems

○ Google
○ Yahoo
○ Facebook

● Decentralized distributed systems
○ E-mail
○ UseNet
○ IRC
○ BitTorrent
○ Tor
○ Bitcoin
○ Ethereum

4



Course Goals

5

● Understand the fundamental challenges inherent in designing and building 
decentralized systems.

● Get a feel for the (limited) body of techniques and solutions we currently have 
for meeting these challenges.

● Examine a number of real, past and present systems, how they work, and 
how and why they succeeded or failed.

● Solidify this knowledge by applying it to the construction of a small, but 
working and usable, decentralized system.



Lecture 1: Course introduction
● Course goals
● Course logistics

○ Tentative schedule and topic outline
○ Course web sites and tools
○ Programming exercises overview

6



Tentative Course Syllabus

7

Week Content Week Content

1 No lecture 8 Replication and consensus

2 Course introduction 9 Sybil attacks and defenses

 3 UseNet and gossip 10 Blockchains and cryptocurrencies

4 Flooding search and routing 11 Anonymous communication

5 Structured search and compact routing 12 Smart contracts

6 Cryptographic tools 13 Advanced blockchain architectures

7 Distributed storage 14 Decentralized democracy



Important course sites and tools
● Moodle for CS-438

○ https://moodle.epfl.ch/course/view.php?id=15483
○ Announcements and discussion forum
○ Slides, exercises, solutions
○ Project descriptions

● Contact address
○ Please E-mail the instructors at: cs438@groupes.epfl.ch

● Lecture style
○ Questions and discussion always welcome and encouraged!
○ Most of the course material will be explained with hand-drawn notes for interactivity.
○ Snapshots of in-lecture notes will be posted to Moodle after each lecture

8
my



Exercises and grading
● Weekly workload

○ Lectures: 2h - Mondays 10:15am-12:00pm in INF 1
■ Zoom link for remote participation: see Moodle

○ TA-guided Q&A sessions: 2h - Fridays 3:15pm-5:00pm in INJ 218
■ Q&A, help with architecting your system and understanding the requirements 
■ The TAs will not debug your code for you.

○ Self-guided work sessions: 2h - Mondays 1:15pm-3:00pm in INF 1
■ Room open to hack, discuss designs/problems, and interop-test with colleagues

○ Homework: 3h-10h depending on your understanding of the concepts and programming skill
○ No sharing or copying code; everyone implements their own Peerster!

● Grading structure:
○ Labs: 60% of grade
○ Project: 40% of grade

9



Programming Exercise Structure
● Three exercise sets over the semester

○ Do not expect to do them last minute
○ Do not skip a part. Successive exercises build on the previous ones.

● TA-guided Q&A sessions
○ Discussion on design choices and how to architect your system
○ The TAs will not directly debug or fix your code for you!

● Main problem-solving and programming to be done “on your own”

10



End of semester project
● Idea will be developed during the semester
● Groups of 2 or 3

○ Every member must have a sub-project representing a readily-distinguishable contribution
○ Together the sub-projects should integrate into a running project
○ Each member will be asked question on his sub-project and evaluated independently

● Must be a project in the scope of the course
○ E.g. adding anonymity to peerster
○ Many potential topics will present themselves throughout the lectures and exercises
○ You’re welcome to come up with your own; ask if you’re uncertain it’s in-scope

13



Project Schedule (tentative)

14

Topic Exercise out Due date

Hw1: Gossip Messaging 27.9.19 15.10.19

Hw1 review 15.10.19 21.10.19

Hw2: Point-to-Point Messaging 18.10.19 5.11.19

Hw2 review 5.11.19 11.11.19

Hw3: Search and File Sharing

● Project proposal by student teams: week 5 (approx)
● Feedback on proposals: week 7 (approx)
● Project proposal refinement: week 8 (approx) 



Why study decentralized systems?

15

● Direct applicability: only a decentralized system can solve computing 
problems in which there is no common authority everyone trusts.

● Indirect applicability: real life is full of decentralized systems — but unlike 
other relevant fields (econ, soc-sci, pol-sci), we get to build and not just study 
them.

● Intellectual challenge: making decentralized systems work reliably and 
securely is often fundamentally more difficult than centralized systems, 
because we get to make fewer simplifying assumptions — particularly about 
security.



Why Build a Decentralized System?

16

● Sometimes a basic requirement: e.g., federated or "business-to-business" systems in which there is 
no natural trusted authority.

● Decentralized system components/subsets may be more autonomous, and hence more available or 
reliable in the face of disconnection or network partition, if they aren't dependent on regular 
communication with a central authority.

● Successful decentralized systems can become vibrant, diverse evolutionary ecosystems when 
alternative, competing node implementations can coexist and interoperate but evolve independently 
(e.g., IRC clients, P2P clients).

● This diversity can in turn make a decentralized system less vulnerable to attack or infection: only a 
subset of the complete system is likely to be vulnerable to any given attack or infection.



Why might we prefer centralized systems?
● Management simplicity: it's much simpler to manage an army of obedient 

slaves; “managing” a decentralized system is akin to herding cats.
● Security model simplicity: a lot of hard security challenges become easy 

when you can just ask a central authority who we assume (rightfully or not) to 
be trustworthy.

● Efficiency: A centralized management and security model can allow for 
simpler and more efficient algorithms, less overhead due to crypto, etc.

● Version compatibility: one can limit the number/variety of software versions 
that exist in a centralized system, but a decentralized node might have to (try 
to) interoperate with any past, future, or independently developed 
software/hardware combination on another node.

17



Major General Topics and Applications
● Communication: messaging, chat, voice/video
● Decentralized search and data mining facilities
● Collaboration mechanisms (e.g., wiki)
● Social networking
● Deliberation, peer review (voting, reputation systems)
● Blockchains, cryptocurrencies, and smart contract systems

This course inherently has a heavy security component — which we approach not 
primarily from a formal or cryptographic perspective, but from a pragmatic systems 
perspective.

18



Recurrent issues and themes
● Identity (real, sybil) versus location
● Information integrity and privacy
● Behavior accountability
● Denial-of-service
● Protocol efficiency, in the normal case and under load or attack

19



Gossip and USENET

20



Early UUCP/USENET Map

22

i¥ - creates

←1986 - ARPAnet
Internet

1987 - "The
Great

Renaming
"



The Life and Death of USENET

23



Even inspired an “Intergalactic USENET”

24



Example USENET message

25

From: jerry@eagle.ATT.COM (Jerry Schwarz)
Path: cbosgd!mhuxj!mhuxt!eagle!jerry
Newsgroups: news.announce
Subject: Usenet Etiquette -- Please Read
Message-ID: <642@eagle.ATT.COM>
Date: Fri, 19 Nov 82 16:14:55 GMT
Followup-To: news.misc
Expires: Sat, 1 Jan 83 00:00:00 -0500
Organization: AT&T Bell Laboratories, Murray Hill

The body of the message comes here, after a blank line.

*

unitnac
. .
.,*%"Important!groplD

Headers[
,

-- 2-Fmpo.a.at!

Body )


