EPFL

4th year physics
Exercises week 4
12.10.2021

Astrophysics III: Stellar and galactic dynamics Solutions

Problem 1:

From Poisson's equation in spherical coordinates we get:

$$
\nabla^{2} \Phi=4 \pi G \rho
$$

$\nabla^{2} \Phi$ written in spherical coordinates, and considering a spherical potential we get:

$$
\nabla^{2} \Phi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Phi}{\partial r}\right)
$$

one then obtains

$$
\nabla^{2} \Phi=\frac{3 G M b^{2}}{\left(r^{2}+b^{2}\right)^{5 / 2}}
$$

and finally:

$$
\rho=\frac{3 M}{4 \pi b^{3}}\left(1+\frac{r^{2}}{b^{2}}\right)^{-5 / 2}
$$

Problem 2:

a) Point mass:

$$
V_{\mathrm{c}}^{2}(r)=\frac{G M}{r}
$$

b) Homogeneous sphere of radius a :

$$
V_{\mathrm{c}}^{2}(r)= \begin{cases}\frac{G M r^{2}}{} & \text { if } r<a \\ \frac{G M}{r} & \text { if } r \geq a\end{cases}
$$

c) Plummer-Schuster potential:

$$
V_{\mathrm{c}}^{2}(r)=\frac{G M r^{2}}{\left(r^{2}+a^{2}\right)^{3 / 2}}
$$

d) Miyamoto-Nagai potential:

$$
V_{\mathrm{c}}^{2}(R)=\frac{G M R^{2}}{\left[R^{2}+(a+b)^{2}\right]^{3 / 2}}
$$

Problem 3:

With the parameterisation:

$$
\begin{aligned}
& h_{R}=a+b \\
& h_{z}=b
\end{aligned}
$$

the circular velocity of the Miyamotio-Nagai potential can be written:

$$
V_{\mathrm{c}}^{2}(R)=\frac{G M R^{2}}{\left(R^{2}+h_{R}^{2}\right)^{3 / 2}}
$$

which is obviously independent of the scale height h_{z}.

Problem 4:

In vc_plummer.py, the following line was required.

$$
\mathrm{vc} 2 _\mathrm{th}=\mathrm{r} * * 2 /(\mathrm{r} * * 2+\mathrm{b} * * 2) * * 1.5
$$

Problem 5:

In vc_miyamoto.py:

- $\quad \mathrm{vc} 2 _\mathrm{Mr}=\mathrm{Mr} / \mathrm{r}$
- $\quad \mathrm{vc} 2 _\mathrm{phi}=\mathrm{r} * \mathrm{dphi}$
- $\quad \mathrm{vc} 2 _\mathrm{th}=\mathrm{r} * * 2 /(\mathrm{r} * * 2+(\mathrm{a}+\mathrm{b}) * * 2) * * 1.5$

In vc_homosphere.py:

- $\quad \mathrm{vc} 2 _\mathrm{Mr}=\mathrm{Mr} / \mathrm{r}$
- $\quad \mathrm{vc} 2 _\mathrm{phi}=\mathrm{r} * \mathrm{dph} i$
- $\quad \mathrm{vc} 2$ _th_in $=\mathrm{r} * * 2 / \mathrm{a} * * 3$
$\mathrm{vc} 2^{-}$th_out $=1 / \mathrm{r}$ $\mathrm{vc} 2_{-} \mathrm{th}{ }^{-}=$where $\left(\mathrm{r}<\mathrm{a}, \mathrm{vc} 2\right.$ _th_in, $\mathrm{vc} 2_{-} \mathrm{th} _$out $)$

In vc_pm.py:

- $\quad \mathrm{vc} 2 _\mathrm{Mr}=\mathrm{Mr} / \mathrm{r}$
- $\quad \mathrm{vc} 2 _\mathrm{phi}=\mathrm{r} * \mathrm{dphi}$
- $\quad \mathrm{vc} 2$ _th $=1 / \mathrm{r}$

