Introduction to Differentiable Manifolds	
EPFL - Fall 2021	M. Cossarini, B. Santos Correia
Exercise series 2, with solutions	2021 – 10 – 12

Exercise 2.1 (Stereographic projection.). Let $N = (0, ..., 0, 1) \in \mathbb{R}^{n+1}$ be the north pole and S = -N the south pole of the sphere \mathbb{S}^n . Define stereographic projection $\sigma : \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$ by

$$\sigma(x_0, \ldots, x_n) = \frac{1}{1 - x_n} (x_0, \ldots, x_{n-1}).$$

Let $\widetilde{\sigma}(x) = \sigma(-x)$ for $x \in \mathbb{S}^n \setminus \{S\}$.

(a) Show that σ is bijective, and

$$\sigma^{-1}(u_0,\ldots,u_{n-1}) = \frac{1}{|u|^2 + 1} (2u_0,\ldots,2u_{n-1},|u|^2 - 1).$$

Solution. To show that σ is bijective and σ^{-1} is its inverse, it is sufficient to verify that

$$\sigma^{-1} \circ \sigma = \mathrm{id},$$

$$\sigma \circ \sigma^{-1} = \mathrm{id}.$$

Let us show first how one could find the formulas for σ and σ^{-1} . We use the following notation: if $u \in \mathbb{R}^n$ and $a \in \mathbb{R}$, we denote (u, a) the point of \mathbb{R}^{n+1} whose first *n* coordinates are the u_i 's and whose last coordinate is *a*. Thus the hyperplane $\Pi = \mathbb{R}^n \times \{0\} \equiv \mathbb{R}^n$ contains the points of the form (u, 0).

Every non-horizontal line r containing the point N intersects the sphere \mathbb{S}^n at one point x (other than N) and intersects the plane Π at a point (u, 0). We want the formulas for the maps $\sigma : x \mapsto u$ and $\sigma^{-1} : u \mapsto x$. If we know x, then r is the image of the map

$$t \in \mathbb{R} \mapsto N + t(x - N) = (tx_0, \dots, tx_{n-1}, 1 + t(x_n - 1))$$

The intersection with the plane Π occurs when the last coordinate is 0, that is, when $t = \frac{1}{1-x_n}$. The point of intersection is (u, 0), where

$$u = (tx_0, \dots, tx_{n-1}) = \frac{1}{1 - x_n} (x_0, \dots, x_{n-1}).$$

This gives the formula for σ .

To compute σ^{-1} suppose we know the point u. Then r is the image of the map

$$t \in \mathbb{R} \mapsto N + t((u,0) - N)) = (tu_0, \dots, tu_n, 1 - t)$$

This point is contained in \mathbb{S}^n if and only if $t^2|u|^2 + (1-t)^2 = 1$. We rewrite the equation as $(|u|^2 + 1)t^2 - 2t = 0$ and find the solutions t = 0 (corresponding to the north pole) and $t = \frac{2}{|u|^2+1}$, corresponding to the point

$$x = \frac{1}{|u|^2 + 1} \left(2u_0, \dots, 2u_{n-1}, |u|^2 - 1 \right).$$

This gives the formula for σ^{-1} .

(b) Compute the transition map $\tilde{\sigma} \circ \sigma^{-1}$ and verify that $\{\sigma, \tilde{\sigma}\}$ is a smooth atlas for \mathbb{S}^n .

Solution. The domains of σ and $\tilde{\sigma}$ cover \mathbb{S}^n . The transition map $\tilde{\sigma} \circ \sigma^{-1}$, defined on $\mathbb{R}^n \setminus \{0\}$ by the formula

$$\widetilde{\sigma} \circ \sigma^{-1}(u) = \sigma \left(-\frac{2u_0, \dots, 2u_{n-1}, |u|^2 - 1}{|u|^2 + 1} \right) = -\frac{(u_0, \dots, u_{n-1})}{|u|^2},$$

is smooth.

(c) Show that the smooth structure defined by the atlas $\{\sigma, \tilde{\sigma}\}$ is the same as the one defined via graph coordinates in the lecture.

Solution. It suffices to show that each chart in $\{\sigma, \tilde{\sigma}\}$ is compatible with all the graph charts ϕ_i^{\pm} . The transition function is given by the formula

$$\phi_i^+ \circ \sigma^{-1}(y) = \phi_i^+ \left(\frac{2y_0, \dots, 2y_{n-1}, |y|^2 - 1}{|y|^2 + 1} \right)$$
$$= \left(\frac{2y_0, \dots, 2y_{i-1}, 2y_{i+1}, \dots, 2y_{n-1}, |y|^2 - 1}{|y|^2 + 1} \right)$$

and is therefore a smooth map. The inverse map $\sigma \circ \phi_i^+(-1)$ is defined on $\sigma^{-1}(\mathbb{S}^n \cap U_i^+)$ and is $[\ldots]$

Exercise 2.2. Show that \mathbb{P}^n is a smooth manifold. (Use exercise from series 1.)

Solution. From exercise series 1, we already know that \mathbb{P}^n is a topological manifold. Convention: All indices i, j, k are in the set $n' = n + 1 = \{0, \ldots, n\}$. For each i we have a chart $\phi_i : U_i \to \mathbb{R}^{n' \setminus \{k\}} \equiv \mathbb{R}^n$, given by

$$U_i = \{ [x] \in \mathbb{P}^n : x^i \neq 0 \} \subseteq \mathbb{P}^n,$$
$$\phi_i : [x] \mapsto \left(\frac{x_j}{x_i}\right)_{j \neq i}.$$

Its inverse is $\phi_i^{-1}: (y^j)_{j \neq i} \mapsto [x^j]_j$ where $x^j := y^j$ if $j \neq i$ and $x^i := 1$. The nontrivial transition functions are $\phi_k \circ \phi_i^{-1}$, with $k \neq i$, defined on

$$\phi_i(U_k) = \{ x \in \mathbb{R}^{n' \setminus \{i\}\}} : x_k \neq 0 \}$$

by the formula

$$\phi_k \circ \phi_i^{-1} : y \mapsto (\frac{x^j}{y_k})_{j \neq k}$$

where the x^j is defined as above: $x^j = y^j$ if $j \neq i$, $x^i = 1$. The transition maps are smooth, therefore the atlas is smooth.

Exercise 2.3 (Open submanifolds). Let N be an open subset of a \mathcal{C}^k n-manifold (M, \mathcal{A}) , and let \mathcal{B} be the set of all charts $\varphi \in \mathcal{A}$ whose domain is contained in N. Prove that:

(1) \mathcal{B} is a \mathcal{C}^k structure for N, making N into a \mathcal{C}^k *n*-manifold. We call the \mathcal{C}^k manifold (N, \mathcal{B}) an open submanifold of M.

Solution. N is a topological n-manifold because it is an open subset of M. Each element of \mathcal{B} is a topological chart of N, because it is an homeomorphism $\varphi: U \to V$, where $U \subseteq N$ is an open subset of M (hence of N) and V is an open subset of \mathbb{R}^n . These charts are smoothly compatible because they are taken from the \mathcal{C}^k structure of M. Finally, let us see that the atlas \mathcal{B} covers N, because for each point $p \in N$ there is a chart $\varphi \in \mathcal{A}$ of M with domain $U \ni p$, and then the restriction $\psi = \varphi|_{U \cap N} : U \cap N \to \varphi(U \cap N)$ is a chart in \mathcal{B} that is defined at p.

(2) The inclusion map $\iota: N \hookrightarrow M$ is \mathcal{C}^k .

Solution. We just need to check that the local expressions of ι are \mathcal{C}^k . These local expressions are of the form

$$\iota_{\psi}^{\varphi} = \varphi \circ \iota \circ \psi^{-1} = \varphi \circ \psi^{-1}$$

with $\varphi \in \mathcal{B} \subseteq \mathcal{A}$ and $\psi \in \mathcal{A}$. They are \mathcal{C}^k because they are transition maps of the atlas \mathcal{A} .

(3) A function $f: L \to N$ (where L is a \mathcal{C}^k manifold) is \mathcal{C}^k if and only if the composite $\iota \circ f$ is \mathcal{C}^k .

Solution. If f is \mathcal{C}^k , the composite $\iota \circ f$ is \mathcal{C}^k because ι is \mathcal{C}^k . Reciprocally, suppose ι is \mathcal{C}^k . Then f is \mathcal{C}^k , because any local expression f_{ξ}^{ψ} (with ξ a chart of L and $\psi \in \mathcal{B}$) is also a local expression of $\iota \circ f$. Indeed,

$$f^{\psi}_{\xi} = \psi \circ f \circ \xi^{-1} = \psi \circ \iota \circ f \circ \xi^{-1}.$$

Use this to show that the general linear group $GL(n, \mathbb{R})$, i.e. the set consisting of invertible $n \times n$ matrices, is naturally a smooth manifold.

Solution. The set $GL(n, \mathbb{R})$ is an open subset of the smooth manifold $M(n, \mathbb{R}) \equiv \mathbb{R}^{n \times n}$ therefore it is naturally a smooth manifold. \Box

Exercise 2.4 (Some basic properties of \mathcal{C}^k manifolds). Let M be a topological manifold and let \mathcal{A} be a \mathcal{C}^k atlas, with $k \geq 1$. Show that:

Let A' be another smooth atlas on M. Then A and A' determine the same smooth structure on M if and only if their union is a smooth atlas.
Solution Let A denote the maximum atlas determined by A: the set of all

Solution. Let $\overline{\mathcal{A}}$ denote the maximum atlas determined by \mathcal{A} : the set of all charts that are smoothly compatible with every chart in \mathcal{A} . We have to show that $\overline{\mathcal{A}} = \overline{\mathcal{A}}'$ if and only if $\mathcal{A} \cup \mathcal{A}'$ is an atlas. We can define the equivalence relation between charts $\phi \sim \psi$ iff ϕ is smoothly compatible with ψ . Then the argument follow from the transitivity property of the smoothly compatible relationship. If $\mathcal{A} \cup \mathcal{A}'$ is an atlas then, $\phi \sim \psi$ for every $(U, \phi) \in \mathcal{A}$ and $(V, \psi) \in \mathcal{A}'$. This implies $\overline{\mathcal{A}} = \overline{\mathcal{A}}'$. Conversely, $\overline{\mathcal{A}} = \overline{\mathcal{A}}'$ implies that for $\xi \in \overline{\mathcal{A}}, \xi \sim \phi$ for every $(U, \phi) \in \mathcal{A}$ then $\xi \sim \psi$ for every $(V, \psi) \in \mathcal{A}'$. Therefore, $\phi \sim \psi$ for every $(U, \phi) \in \mathcal{A}$ and $(V, \psi) \in \mathcal{A}'$. So $\mathcal{A} \cup \mathcal{A}'$ is an atlas.

(2) Every \mathcal{C}^k chart $\varphi: U \to V$ of M is a \mathcal{C}^k diffeomorphism.

Solution. We know that $\phi : U \to \phi(U)$ is an homeomorphism. Moreover ϕ is a smooth map iff the composition $id_{\mathbb{R}^n} \circ \phi \circ \phi^{-1}$ is smooth. Since $id_{\mathbb{R}^n} \circ \phi \circ \phi^{-1} = id_{\mathbb{R}^n}$ is a smooth map so ϕ is a smooth map. One can show that ϕ^{-1} is smooth as well by a similar argument.

(3) The composite $g \circ f$ of two \mathcal{C}^k maps $f: M \to N, g: N \to P$ is a \mathcal{C}^k map. Solution. Let $f: M \to N$ and $g: N \to P$ be smooth maps. Then by definitions the maps $\phi \circ f \circ \psi^{-1}$ and $\psi \circ g \circ \xi^{-1}$ are smooth for every smooth local chart ϕ, ψ , and ξ on M, N, and P respectively. Then the composition $h = f \circ g$ is smooth since the function

$$\phi \circ h \circ \xi^{-1} = \phi \circ f \circ g \circ \xi^{-1} = \phi \circ f \circ \psi^{-1} \circ \psi \circ g \circ \xi^{-1}$$

is smooth for every local chart.

(4) Let \mathcal{A}_0 , \mathcal{A}_1 be two \mathcal{C}^k atlases on M, defining two \mathcal{C}^k manifolds $M_i = (M, \overline{\mathcal{A}_i})$. Then the two atlases \mathcal{A}_i are equivalent iff the following holds:

For every function $f: N \to M$ (where N is a \mathcal{C}^k manifold), the function f is \mathcal{C}^k as a map $N \to M_0$ if and only if it is \mathcal{C}^k as a map $N \to M_1$.

Solution. (\Rightarrow) is clear. Let us prove prove (\Leftarrow) . Thuss assuming the last property holds, let us show that the atlases \mathcal{A}_0 , \mathcal{A}_1 are equivalent. For this, it suffices to prove the following:

Claim: For every $\varphi \in \mathcal{A}_0$, $\psi \in \mathcal{A}_1$ the transition maps $\psi \circ \varphi^{-1}$ and $\varphi \circ \psi^{-1}$ are \mathcal{C}^k .

Proof of claim: The function φ is a \mathcal{C}^k isomorphism $U \to V$, where $U \subseteq M_0$ and $V \subseteq \mathbb{R}^n$ are open sets. Therefore its inverse $\varphi^{-1} : V \to M_0$ is \mathcal{C}^k . Then, by the hypothesis, $\varphi^{-1} : V \to M_1$ is \mathcal{C}^k . Therefore $\psi \circ \varphi^{-1}$ is \mathcal{C}^k for each $\psi \in \mathcal{A}_1$, as claimed. An analogous argument shows that $\varphi \circ \psi^{-1}$ is \mathcal{C}^k . \Box

Exercise 2.5 (Smooth structures on \mathbb{R}). On the real line \mathbb{R} (with the standard topology) we define two atlases $\mathcal{A} = \{ \mathrm{id}_{\mathbb{R}} \}, \mathcal{B} = \{ \varphi \}$, where $\varphi : \mathbb{R} \to \mathbb{R}$ is given by $\varphi(x) = x^3$.

- (a) Convince yourself that \mathcal{B} defines a smooth structure on \mathbb{R} . Solution. The atlas \mathcal{B} contains a single chart, therefore it is a smooth atlas, and it is contained in a unique maximal smooth atlas.
- (b) Show that \mathcal{A} and \mathcal{B} define distinct smooth structures. Solution. The charts ϕ and $\mathrm{id}_{\mathbb{R}}$ are not smoothly compatible since the $\mathrm{id}_{\mathbb{R}} \circ \phi^{-1} : y \mapsto y^{1/3}$ is not smooth. Therefore, the atlases \mathcal{A} and \mathcal{B} define distinct smooth structures.
- (c) Find a smooth diffeomorphism $(\mathbb{R}, \overline{\mathcal{A}}) \to (\mathbb{R}, \overline{\mathcal{B}})$. Solution. The homeomorphism $f : (\mathbb{R}, \overline{\mathcal{A}}) \to (\mathbb{R}, \overline{\mathcal{B}})$ defined by $f(x) = x^3$ is a diffeomorphism since the local expressions

$$f_{\mathrm{id}_{\mathbb{R}}}^{\varphi} = \mathrm{id}_{\mathbb{R}} \circ f \circ \varphi^{-1} = \mathrm{id}_{\mathbb{R}}$$

and

$$f^{-1}|_{\varphi}^{\mathrm{id}_{\mathbb{R}}} = \varphi \circ f^{-1} \circ \mathrm{id}_{\mathbb{R}} = \mathrm{id}_{\mathbb{R}}$$

are smooth.

Exercise 2.6 (Product manifolds). Let M_0 and M_1 be \mathcal{C}^k manifolds of dimension m_0 and m_1 respectively. Recall that $M = M_0 \times M_1$ (with the product topology) is a topological manifold of dimension $m_0 + m_1$.

(a) Find a natural \mathcal{C}^k structure on $M_0 \times M_1$ such that two projections π_i : $M_0 \times M_1 \to M_i$ are \mathcal{C}^k maps.

Solution. Let \mathcal{A}_0 and \mathcal{A}_1 be atlases that define the \mathcal{C}^k structures of M_0 and M_1 respectively. We define for M the atlas \mathcal{A} consisting of charts

$$\varphi = \varphi_0 \times \varphi_1 : U_0 \times U_1 \to V_0 \times V_1,$$

where $\mathcal{A}_0 \ni \varphi_0 : U_0 \to V_0$ and $\mathcal{A}_1 \ni \varphi_1 : U_1 \to V_1$. The transition functions are of the form

$$\varphi \circ \psi^{-1} = (\varphi_0 \circ \psi_0^{-1}) \times (\varphi_1 \circ \psi_1^{-1}),$$

thus they are \mathcal{C}^k maps. Therefore \mathcal{A} is a \mathcal{C}^k atlas for M.

Let us show that the projection maps $\pi_i : M_0 \times M_1 \to M_i$ are \mathcal{C}^k . Indeed, for every point $p = (p_0, p_1) \in M$ we can find a chart $\varphi = \varphi_0 \times \varphi_1$ defined at p, then note that φ_i is a chart defined at $p_i = \pi_i(p)$. Thus we can write the local expression

$$\pi_i|_{\varphi}^{\varphi_i} = \varphi_i \circ \pi_i \circ (\varphi_0^{-1} \times \varphi_1 - 1) = \pi_i : V_0 \times V_1 \to V_i$$

which is \mathcal{C}^k .

(b) Show that a map $f : N \to M_0 \times M_1$ (where N is another \mathcal{C}^k manifold) is \mathcal{C}^k if and only if the two composite maps $\pi_i \circ f$ are \mathcal{C}^k .

Solution. If f is \mathcal{C}^k , then the composite maps $f^i = \pi_i \circ f$ are \mathcal{C}^k because the π_i are \mathcal{C}^k . Conversely, suppose that the composite maps f^i are \mathcal{C}^k . Then f is \mathcal{C}^k because for every chart ψ of N and every chart $\varphi = \varphi_0 \times \varphi_1 \in \mathcal{A}$ of $M_0 \times M_1$, the local expression

$$\varphi \circ f \circ \psi^{-1} = (\varphi_0 \circ f_0 \circ \psi^{-1}, \varphi_1 \circ f_1 \circ \psi^{-1})$$

is \mathcal{C}^k .

 \square