Introduction to Differentiable Manifolds	
EPFL - Fall 2021	M. Cossarini, B. Santos Correia
Exercise series 5	$\mathbf{2 0 2 1 - 1 0 - 1 9}$

Exercise 5.1. Consider the map

$$
f: \mathbb{R} \rightarrow \mathbb{R}^{2}: t \mapsto(2+\tanh t) \cdot(\cos t, \sin t)
$$

Show that f is an injective immersion. Is it a smooth embedding?
Exercise 5.2. Consider the following subsets of \mathbb{R}^{2}. Which is an embedded submanifold? Which is the image of an immersion ?
(a) The "cross" $S:=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=0\right\}$.
(b) The "corner" $C:=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=0, x \geq 0, y \geq 0\right\}$

Exercise 5.3. Let N be a \mathcal{C}^{k}-embedded n-submanifold of some m-manifold M, with $k \geq 1$. Show that there exists an open set $U \subseteq M$ that contains N as a closed subset.
Exercise 5.4. Let $f: M \rightarrow N$ be an injective immersion of \mathcal{C}^{k} manifolds. Show that there exists a closed embedding $M \rightarrow N \times \mathbb{R}$.
Hint: Recall that there exists a proper map $g: M \rightarrow \mathbb{R}$.
Exercise 5.5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=x^{3}+y^{3}+1$.
(a) What are the regular values of f ? For which $c \in \mathbb{R}$ is the level set $f^{-1}(\{c\})$ an embedded submanifold of \mathbb{R}^{2} ?
(b) In the case where $S=f^{-1}(\{c\})$ is an embedded submanifold, $p \in S$, write down an equation for the tangent space $\iota_{*}\left(T_{p} S\right) \subset T_{p} \mathbb{R}^{2}$ where as usual we identify $T_{p} \mathbb{R}^{2} \cong \mathbb{R}^{2}$ (i.e. you are expected to write down the equation for a line in \mathbb{R}^{2}).

Exercise 5.6. Consider the n-torus $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ and let $\pi: \mathbb{R}^{n} \rightarrow \mathbb{T}^{n}$ be the projection map.
(a) Give \mathbb{T}^{n} a natural smooth structure so that π is a local diffeomorphism.
(b) Show that a map $f: \mathbb{T}^{n} \rightarrow N$ (where M is a smooth manifold) is \mathcal{C}^{k} if and only if the composite $f \circ \pi$ is smooth.
(c) Show that \mathbb{T}^{n} is diffeomorphic to the product of n copies of the circle \mathbb{S}^{1}.

Exercise 5.7. Show that the map $g: \mathbb{T}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
g([s, t])=((2+\cos s) \cos t,(2+\cos s) \sin t, \sin s)
$$

is a smooth embedding of the 2 -torus in \mathbb{R}^{3}.
Exercise 5.8. Show that the following subgroups of $G L_{n}(\mathbb{R})$ are closed submanifolds. Compute their dimension and their tangent space at the identity.
(a) The special linear group $\mathrm{SL}_{n}(\mathbb{R})$, consisting of matrices with determinant equal to 1 .
(b) The orthogonal group $O_{n}(\mathbb{R})$, consiting of orthogonal matrices A (which satisfy $A^{t} A=I$).
Hint: Consider the map $f: M(n) \rightarrow M_{s y m}(n)$ that sends $A \mapsto A^{t} A$, there $M_{s y m}(n)$ is the vector space of symmetric $n \times n$ matrices.

