Introduction to Differentiable Manifolds	
$EPFL - Fall \ 2021$	M. Cossarini, B. Santos Correia
Exercise series 5	2021 - 10 - 19

Exercise 5.1. Consider the map

 $f: \mathbb{R} \to \mathbb{R}^2: t \mapsto (2 + \tanh t) \cdot (\cos t, \sin t).$

Show that f is an injective immersion. Is it a smooth embedding?

Exercise 5.2. Consider the following subsets of \mathbb{R}^2 . Which is an embedded submanifold? Which is the image of an immersion?

- (a) The "cross" $S := \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}.$ (b) The "corner" $C := \{(x, y) \in \mathbb{R}^2 \mid xy = 0, x \ge 0, y \ge 0\}$

Exercise 5.3. Let N be a \mathcal{C}^k -embedded n-submanifold of some m-manifold M, with $k \geq 1$. Show that there exists an open set $U \subseteq M$ that contains N as a closed subset.

Exercise 5.4. Let $f: M \to N$ be an injective immersion of \mathcal{C}^k manifolds. Show that there exists a closed embedding $M \to N \times \mathbb{R}$. *Hint:* Recall that there exists a proper map $g: M \to \mathbb{R}$.

Exercise 5.5. Let $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = x^3 + y^3 + 1$.

- (a) What are the regular values of f? For which $c \in \mathbb{R}$ is the level set $f^{-1}(\{c\})$ an embedded submanifold of \mathbb{R}^2 ?
- (b) In the case where $S = f^{-1}(\{c\})$ is an embedded submanifold, $p \in S$, write down an equation for the tangent space $\iota_*(T_pS) \subset T_p\mathbb{R}^2$ where as usual we identify $T_p \mathbb{R}^2 \cong \mathbb{R}^2$ (i.e. you are expected to write down the equation for a line in \mathbb{R}^2).

Exercise 5.6. Consider the *n*-torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ and let $\pi : \mathbb{R}^n \to \mathbb{T}^n$ be the projection map.

- (a) Give \mathbb{T}^n a natural smooth structure so that π is a local diffeomorphism.
- (b) Show that a map $f: \mathbb{T}^n \to N$ (where M is a smooth manifold) is \mathcal{C}^k if and only if the composite $f \circ \pi$ is smooth.
- (c) Show that \mathbb{T}^n is diffeomorphic to the product of *n* copies of the circle \mathbb{S}^1 .

Exercise 5.7. Show that the map $q: \mathbb{T}^2 \to \mathbb{R}^3$ given by

$$g([s,t]) = ((2 + \cos s) \cos t, (2 + \cos s) \sin t, \sin s)$$

is a smooth embedding of the 2-torus in \mathbb{R}^3 .

Exercise 5.8. Show that the following subgroups of $GL_n(\mathbb{R})$ are closed submanifolds. Compute their dimension and their tangent space at the identity.

- (a) The special linear group $SL_n(\mathbb{R})$, consisting of matrices with determinant equal to 1.
- (b) The orthogonal group $O_n(\mathbb{R})$, consisting of orthogonal matrices A (which satisfy $A^t A = I$).

Hint: Consider the map $f: M(n) \to M_{sym}(n)$ that sends $A \mapsto A^{t}A$, there $M_{sym}(n)$ is the vector space of symmetric $n \times n$ matrices.