Introduction to Differentiable Manifolds	
EPFL - Fall 2021	M. Cossarini, B. Santos Correia
Exercise series 4	$\mathbf{2 0 2 1 - 1 0 - 1 2}$

Exercise 4.1 (A little heads-up regarding coordinate vectors). Let φ and ψ be smooth charts on a smooth manifold M defined on the same domain U. If the first coordinate functions φ^{0} and ψ^{0} agree ($\varphi^{0} \equiv \psi^{0}$ on U), this does not imply $\left.\frac{\partial}{\partial \varphi^{0}}\right|_{p}=\left.\frac{\partial}{\partial \psi^{0}}\right|_{p}$ for $p \in U$.

Work out a simple example of this fact e.g. on $M=\mathbb{R}^{2}$ by considering on the one hand the Cartesian coordinates (x, y) and on the other hand the chart (u, v) given by $u=x, v=x+y$.
This shows that $\left.\frac{\partial}{\partial \varphi^{i}}\right|_{p}$ depends on the whole system $\left(\varphi^{0}, \ldots, \varphi^{n-1}\right)$, not only on φ^{i}.
Exercise 4.2 (The tangent space of a vector space). Let V be an n-dimensional vector space.
(a) Let \mathcal{A} be the set of linear isomorphisms $\varphi: V \rightarrow \mathbb{R}^{n}$. Show that there is a topology on V such that all $\varphi \in \mathcal{A}$ are homeomorphisms. Show that \mathcal{A} is a smooth atlas on V. In other words, any vector space has a natural smooth structure.
(b) Fix $a \in V$. To every $v \in V$ we associate the curve passing through a

$$
\gamma_{v}: \mathbb{R} \rightarrow V: t \mapsto a+t v
$$

Show that the map $\Phi_{a}: V \rightarrow T_{a} V: v \mapsto \gamma_{v}^{\prime}(0)$ is an isomorphism of vector spaces. Hence we can identify a vector space with its tangent space in a canonical way.
(c) Let $f: V \rightarrow W$ be a linear map between vector spaces V, W. Consider the differential $D_{a} f: T_{a} V \rightarrow T_{F(a)} W$ at any point $a \in V$. Identifying $T_{a} V \cong V$ and $T_{f(a)} W \cong W$ via the isomorphisms $\Phi_{a}, \Phi_{f(a)}$, show that $D_{a} f$ is identified with f. That is, show that the following diagram commutes:

Exercise 4.3 (Differential of the determinant function). Consider the determinant function det : $M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$, where $M_{n}(\mathbb{R}) \simeq \mathbb{R}^{n \times n}$ is the vector space of real $n \times n$, with its natural smooth structure. We want to compute its differential transformation D_{A} det at any matrix $A \in \mathrm{GL}_{n}(\mathbb{R})$ (i.e. at any invertible matrix),

$$
D_{A} \operatorname{det}: T_{A} M_{n}(\mathbb{R}) \rightarrow T_{\operatorname{det}(A)} \mathbb{R}
$$

(Note that we may identify $T_{A} M_{n}(\mathbb{R})$ with $M_{n}(\mathbb{R})$ and $T_{\operatorname{det}(A)} \mathbb{R}$ with \mathbb{R}.)
(a) Verify that det is a smooth function.

Hint: Write the determinant as a sum over all n-permutations.
(b) Show that the differential of det at the identity matrix $I \in M_{n}(\mathbb{R})$ is

$$
D_{I} \operatorname{det}(B)=\operatorname{tr}(B) .
$$

where tr denotes the trace.
(c) Show that for arbitrary $A \in \mathrm{GL}_{n}(\mathbb{R}), B \in M_{n}(\mathbb{R})$.

$$
D_{A} \operatorname{det}(B)=(\operatorname{det} A) \operatorname{tr}\left(A^{-1} B\right)
$$

Hint: Write $\operatorname{det}(A+t B)=(\operatorname{det} A)\left(\operatorname{det}\left(I+t A^{-1} B\right)\right)$.
(d) Show that D_{A} det is the null linear transformation if $A=0$ and $n \geq 2$.

Exercise 4.4 (Diffeomorphic manifolds have the same dimension). Let M and N be nonempty diffeomorphic manifolds. Show that $\operatorname{dim} M=\operatorname{dim} N$.

Exercise 4.5 (Tangent vectors as derivations). Let M be a \mathcal{C}^{k} manifold, $k \geq 1$, and let $p \in M$. Show that the map $\nu_{p}: X \in T_{p} M \mapsto D_{X} \in \operatorname{Der}_{p} M$ defined by

$$
D_{X}: f \in C^{k}(M, \mathbb{R}) \mapsto D_{p} f(X) \in T_{f(p)} \mathbb{R} \cong \mathbb{R}
$$

is linear and injective.
Hint: To prove injectivity, take a chart ϕ that is defined at p. Any vector $X \in T_{p} M$ can be written as $X=\left.\sum_{i} X^{i} \frac{\partial}{\partial \phi^{i}}\right|_{p}$. Show that $D_{X}\left(\phi^{j}\right)=X^{j}$.
Exercise 4.6 (Nonvectorial derivations ${ }^{*}$ - optional). Let M be a \mathcal{C}^{k}-differentiable n-manifold and let $\operatorname{Der}_{p} M$ be the vector space of derivations at some point $p \in M$.
(a) If M is a smooth manifold, show that $\operatorname{Der}_{p}(M)$ has dimension n.

Hint: Prove Hadamard's lemma: any $f \in \mathcal{C}^{1+k}(M)_{p}$ can be locally written as $f(p)+$ $\sum_{i} \varphi^{i} f_{i}$, with $f_{i} \in \mathcal{C}^{k}(M), \varphi$ a chart satisfying $\varphi(p)=0$.
(b) Let $I \subseteq C^{k}(M, \mathbb{R})$ be the ideal of functions that vanish at p. Show that a linear map $X: \mathcal{C}^{k}(M) \rightarrow \mathbb{R}$ satisfies the Leibniz identity iff it vanishes on I^{2} and on \mathbb{R}. Conclude that $\operatorname{Der}_{p}(M) \equiv\left(I / I^{2}\right)^{*}$.
(c) (Newns-Walker, 1956) If $k<\infty$, show that I / I^{2} is infinite dimensional if $k<\infty$. Conclude that $\operatorname{Der}_{p} M$ is infinite dimensional.
Hint: (From Laird E Taylor (1972), "The tangent space of a C^{k} manifold") For the case $M=\mathbb{R}, p=0$, show that the functions $f_{\sigma}(t)=|t|^{\sigma}$ with $k<\sigma<k+1$, taken modulo I^{2}, are linearly independent. To distinguish these functions, define the vanishing order ord (f) of a function $f \in I$ as the maximum $\alpha \geq 0$ such that $\lim _{t \rightarrow 0} \frac{f(t)}{|t|^{\alpha}}=0$ and use Taylor's theorem to show that $\operatorname{ord}(f) \notin(k, k+1)$ if $f \in I^{2}$.

