Introduction to Differentiable Manifolds	
$EPFL - Fall \ 2021$	M. Cossarini, B. Santos Correia
Exercise series 4	2021 – 10 – 12

Exercise 4.1 (A little heads-up regarding coordinate vectors). Let φ and ψ be smooth charts on a smooth manifold M defined on the same domain U. If the first coordinate functions φ^0 and ψ^0 agree ($\varphi^0 \equiv \psi^0$ on U), this does not imply $\frac{\partial}{\partial \varphi^0}|_p = \frac{\partial}{\partial \psi^0}|_p$ for $p \in U$.

Work out a simple example of this fact e.g. on $M = \mathbb{R}^2$ by considering on the one hand the Cartesian coordinates (x, y) and on the other hand the chart (u, v) given by u = x, v = x + y. This shows that $\frac{\partial}{\partial \varphi^i}|_p$ depends on the whole system $(\varphi^0, \dots, \varphi^{n-1})$, not only on φ^i .

Exercise 4.2 (The tangent space of a vector space). Let V be an *n*-dimensional vector space.

- (a) Let \mathcal{A} be the set of linear isomorphisms $\varphi: V \to \mathbb{R}^n$. Show that there is a topology on V such that all $\varphi \in \mathcal{A}$ are homeomorphisms. Show that \mathcal{A} is a smooth atlas on V. In other words, any vector space has a natural smooth structure.
- (b) Fix $a \in V$. To every $v \in V$ we associate the curve passing through a

$$\gamma_v : \mathbb{R} \to V : t \mapsto a + tv$$

Show that the map $\Phi_a: V \to T_a V: v \mapsto \gamma'_v(0)$ is an isomorphism of vector spaces. Hence we can identify a vector space with its tangent space in a canonical way.

(c) Let $f: V \to W$ be a *linear* map between vector spaces V, W. Consider the differential $D_a f: T_a V \to T_{F(a)} W$ at any point $a \in V$. Identifying $T_a V \cong V$ and $T_{f(a)}W \cong W$ via the isomorphisms $\Phi_a, \Phi_{f(a)}$, show that $D_a f$ is identified with f. That is, show that the following diagram commutes:

Exercise 4.3 (Differential of the determinant function). Consider the determinant function det : $M_n(\mathbb{R}) \to \mathbb{R}$, where $M_n(\mathbb{R}) \simeq \mathbb{R}^{n \times n}$ is the vector space of real $n \times n$, with its natural smooth structure. We want to compute its differential transformation D_A det at any matrix $A \in \operatorname{GL}_n(\mathbb{R})$ (i.e. at any invertible matrix),

$$D_A \det : T_A M_n(\mathbb{R}) \to T_{\det(A)} \mathbb{R}$$

(Note that we may identify $T_A M_n(\mathbb{R})$ with $M_n(\mathbb{R})$ and $T_{\det(A)}\mathbb{R}$ with \mathbb{R} .)

(a) Verify that det is a smooth function.

Hint: Write the determinant as a sum over all *n*-permutations.

(b) Show that the differential of det at the identity matrix $I \in M_n(\mathbb{R})$ is

$$D_I \det(B) = \operatorname{tr}(B).$$

where tr denotes the trace.

(c) Show that for arbitrary $A \in GL_n(\mathbb{R}), B \in M_n(\mathbb{R})$.

$$D_A \det(B) = (\det A) \operatorname{tr}(A^{-1}B)$$

Hint: Write $det(A + tB) = (det A)(det(I + tA^{-1}B)).$

(d) Show that D_A det is the null linear transformation if A = 0 and $n \ge 2$.

Exercise 4.4 (Diffeomorphic manifolds have the same dimension). Let M and Nbe nonempty diffeomorphic manifolds. Show that $\dim M = \dim N$.

Exercise 4.5 (Tangent vectors as derivations). Let M be a \mathcal{C}^k manifold, $k \geq 1$, and let $p \in M$. Show that the map $\nu_p : X \in T_pM \mapsto D_X \in Der_pM$ defined by

$$D_X: f \in C^k(M, \mathbb{R}) \mapsto D_p f(X) \in T_{f(p)} \mathbb{R} \cong \mathbb{R}$$

is linear and injective.

Hint: To prove injectivity, take a chart ϕ that is defined at p. Any vector $X \in T_p M$ can be written as $X = \sum_i X^i \frac{\partial}{\partial \phi^i}|_p$. Show that $D_X(\phi^j) = X^j$.

Exercise 4.6 (Nonvectorial derivations^{*} – optional). Let M be a \mathcal{C}^k -differentiable n-manifold and let Der_pM be the vector space of derivations at some point $p \in M$.

- (a) If M is a smooth manifold, show that $Der_p(M)$ has dimension n. *Hint:* Prove Hadamard's lemma: any $f \in C^{1+k}(M)_p$ can be locally written as $f(p) + \sum_i \varphi^i f_i$, with $f_i \in C^k(M)$, φ a chart satisfying $\varphi(p) = 0$.
- (b) Let $I \subseteq C^k(M, \mathbb{R})$ be the ideal of functions that vanish at p. Show that a linear map $X : C^k(M) \to \mathbb{R}$ satisfies the Leibniz identity iff it vanishes on I^2 and on \mathbb{R} . Conclude that $Der_p(M) \equiv (I/I^2)^*$.
- (c) (Newns–Walker, 1956) If $k < \infty$, show that I/I^2 is infinite dimensional if $k < \infty$. Conclude that $Der_p M$ is infinite dimensional. *Hint:* (From Laird E Taylor (1972), "The tangent space of a C^k manifold") For the case $M = \mathbb{R}, p = 0$, show that the functions $f_{\sigma}(t) = |t|^{\sigma}$ with $k < \sigma < k + 1$, taken modulo I^2 , are linearly independent. To distinguish these functions, define the vanishing order $\operatorname{ord}(f)$ of a function $f \in I$ as the maximum $\alpha \geq 0$ such that $\lim_{t\to 0} \frac{f(t)}{|t|^{\alpha}} = 0$ and use Taylor's theorem to show that $\operatorname{ord}(f) \notin (k, k + 1)$ if $f \in I^2$.