
Introduction to Differentiable Manifolds
EPFL – Fall 2021 M. Cossarini, B. Santos Correia
Exercise series 3, with solutions 2021–10–19

Note: Here we will use the notation Tpf rather than Dpf to denote the differential
of a map f between manifolds. The symbol Dpf will only be used to denote the
usual differential, defined when f is a map between open subsets of Euclidean spaces.

Exercise 3.1. Prove that for any open cover U = {Uj}j∈J of a Ck manifold M there
exists a partition of unity (ξj)j∈J such that supp(ξj) ⊆ Uj for all j.

Solution. This theorem is a second version of the theorem of existence of partitions
of unity. By the first version of the theorem, there exists a partition of unity (ηi)i∈I
where each ηi has its support supp(ηi) contained in Uj for some j = f(i) ∈ J . (We
also know that supp(ηi) compact, but that is not useful for the proof.) Note that the
functions ηi may be many more than the sets Uj . For example, if M is noncompact,
since the compact supports supp(ηi) cover M , we see that I is infinite even if J is
finite.

However, we can “group” the functions ηi as follows. For each j ∈ J let Ij = {i ∈
I : f(i) = j}. The sets (Ij)j∈J form a partition of I, i.e., each i ∈ I is contained in
exactly one of the sets Ij (namely, when j = f(i)).

Define for each j ∈ J the function ξj =
∑

i∈Ij ηi. This function ξj is Ck because

locally it is a finite sum of Ck functions. The functions ηj are Ck and form a partition
of unity because ∑

j∈J
ξj =

∑
j∈J

∑
i∈Ij

ηi =
∑
i∈I

ηi = 1

To finish, we must check that each ξj is supported on Uj . And indeed,

supp(ξj) =
⋃
i∈Ij

{x ∈ R : ηi(x) > 0} ⊆
⋃
i∈Ij

{x ∈ R : ηi(x) > 0} =
⋃
i∈Ij

supp(ηi).

Here we are using again the local finiteness of the family (supp(ηi))i∈I . In general,
if (Ai)i is a family of subsets of a topological space, then we have just an inclusion⋃
Ai ⊇

⋃
iAi. The equality holds, for instance, if the family (Ai)i is locally finite,

which is the case here. �

Exercise 3.2. A continuous map f : X → Y is called proper if f−1(K) is compact
for every compact set K ⊆ Y . Show that for every Ck manifold M there exists a Ck
map f : M → [0,+∞) that is proper.

Hint: Note that f must be unbounded unless M is compact. Use a function of the form

f =
∑

i∈N cifi, where (fi)i∈N is a partition of unity and the ci’s are real numbers.

Solution. Let (Ui)i∈N be a countable topological basis for M such that Ui is compact
for each i. Let (fi) be a Ck partition of unity on M such that supp(fi) ⊆ Ui for each
i. Define the Ck function f : M → R by the formula f(x) =

∑
i∈N ci fi(x), where

ci ≥ 0 are numbers satisfying limi→∞ ci = +∞. (For instance, we may put ci = i.)

We can view f(x) as a weighted average of the numbers ci, using as weights the
coefficients fi(x) ≥ 0, which satisfy

∑
i fi(x) = 1. In particular, note that if Ix ⊆ N

is the set of indices such that Ui contains the point x, then any upper or lower bound
for the numbers ci with i ∈ Ix is also an upper or lower bound for f(x). It follows
that if f(x) < c, then x is contained in the union of the first few Ui’s which satisfy
ci < c.

To see that f is proper, let K ⊆ R be a compact set. Take any number c ≥ 0 such
that K ⊆ (−c, c), and let ic ∈ N such that ci ≥ c for i ≥ ic. The preimage f−1(K)
consists of points x satisfying f(x) < c, and is therefore contained in the compact
set
⋃
i<ic

Ui. Since the set f−1(K) is closed, we conclude that it is compact. �
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Exercise 3.3. Let M be a Ck manifold and let U be an open neighborhood of
the set M × {0} in the space M × [0,+∞). Show that there exists a Ck function
f : M → (0,+∞) whose graph is contained in U .

Solution. Every point {x} × {0} of the set M × {0} has a neighborhood V × [0, ε)
contained in U , where V ⊆M is an open neighborhood of x and ε > 0. Thus there
is a covering of M by open sets Vi and numbers εi > 0 such that Vi× [0, εi) ⊆ U for
all i. Let (fi)i be a partition of unity with supp(fi) ⊆ Ui. Then we can take the Ck
function f =

∑
i
εi
2 fi. �

Exercise 3.4. Let M be a Ck-differentiable n-manifold. Show that:

(1)

(p, φ, v) ∼ (q, ψ, w) ⇐⇒ q = p and w = Dφ(p)(ψ φ
−1)(v)

is an equivalence relation between coordinatized tangent vectors.

Solution. Let us check that ∼ is an equivalence relation:
• reflexivity: Let (p, φ, v) be a coordinatized tangent vector, with φ :
W → U . To see that (p, φ, v) ∼ (p, φ, v), we compute

Dφ(p)(φ ◦ φ−1)(v) = Dφ(p)(idU )(v) = idRn(v) = v

• symmetry : Suppose that (p, φ, v) ∼ (q, ψ, w).
This means that p = q and w = Dψ(p)(ψ ◦ φ−1)(v). Therefore

Dψ(q)(φψ
−1)(w) = Dψ(q)(φψ

−1)(Dφ(p)(ψ φ
−1)(v))

= Dφ(p)((φψ
−1) ◦ (ψ φ−1))(v)

= Dφ(p)(idU )(v) = v

which implies that (q, ψ, w) ∼ (p, φ, v).

• transitivity:
Suppose that (p, φ, v) ∼ (q, ψ, w) and (q, ψ, w) ∼ (r, η, z).
We know from the first relation that p = q and Dφ(p)(ψ ◦ φ−1)(v) = w ;

from the second relation we know that q = r and Dψ(q)(η◦ψ−1)(w) = z.
Then we observe that p = r and by the chain rule,

Dφ(p)(η φ
−1)(v) = Dφ(p)((η ψ

−1) ◦ (ψ φ−1))(v)

= Dψ(p)(η ψ
−1)((Dφ(p)(ψ φ

−1)(v))

= Dψ(p)(η ◦ ψ−1)(w) = z

We conclude that (p, φ, v) ∼ (r, η, z).
�

(2) Fixed a point p ∈M and a Ck chart ϕ defined on p, the function Rn → TpM
sending v 7→ [p, ϕ, v] is a bijection.

Solution. The function defined in this point has been defined in the course
and it was denoted by ι (we will keep this notation here).

• Injectivity:
Let v, v′ ∈ Rn such that ι(v) = ι(v′). Thus (p, φ, v) ∼ (p, φ, v′). It fol-
lows that v′ = Dφ(p)(φ ◦ φ−1)(v) = Dφ(p)(idU )(v) = idRn(v) = v where
U is the image of φ.

• Surjectivity:
Let [p, ψ,w] ∈ TpM , we want to find a v ∈ Rn such that ι(v) = [p, ψ,w].
We have to ensure [p, φ, v] = [p, ψ,w], which means that (p, φ, v) ∼
(p, ψ,w). It suffices to put v = Dψ(p)(φ ◦ ψ−1)(w).

�
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(3) Vector addition and scalar multiplication are well defined and make TpM a
real vector space of dimension n.

Solution. We have to show that the sum [p, φ, v] + [p, φ, w] = [p, φ, v + w] is
well defined, i.e., it does not depend on the representatives we take of the
equivalence classes [p, φ, v] and [p, φ, w]. Initially we have the representatives
(p, φ, v) and (p, φ, w), and we take a second set of representatives using a
different chart ψ, i.e.,

(p, φ, v) ∼ (p, ψ, v) and (p, φ, w) ∼ (p, ψ,w).

and we have to show that (p, φ, v + w) ∼ (p, ψ, v + w). We compute

v + w = Dφ(p)(ψ ◦ φ−1)(v) +Dφ(p)(ψ ◦ φ−1)(w) = Dφ(p)(ψ ◦ φ−1)(v + w).

We can use the same idea to show that scalar multiplication λ [p, φ, v] =
[p, φ, λ v] is well defined.

�

(4) The differential of a Ck map f : M → N at a point p ∈ M is a well-defined
linear map Tpf : TpM → TpN .

Solution. We want to show that the map Tpf is well defined.

We take two representatives of the class [p, φ, v]: (p, φ, v) ∼ (p, φ, v), then
we apply Dpf on both of them and we get:

Tpf(p, φ, v) = (f(p), ψ,Df(p)(ψ ◦ f ◦ φ−1)(v)︸ ︷︷ ︸
a

)

Tpf(p, φ, v) = (f(p), ψ,Df(p)(ψ ◦ f ◦ φ
−1

)(v)︸ ︷︷ ︸
b

)

We will show that the resulting expressions represent the same tangent
vector by checking that Dψ◦f(p)(ψ ◦ ψ−1)(a) = b .

We compute

Dψ◦f(p)(ψ ◦ ψ−1)(Df(p)(ψ ◦ f ◦ φ−1)(v)) = Dφ(p)(ψ ◦ f ◦ φ−1(v))

= Dφ(p)(ψ ◦ f ◦ φ−1(Dφ(p)(φ ◦ φ
−1

)(v)))

= Dφ(p)(ψ ◦ f ◦ φ
−1

)(v).

This concludes the proof.
Now we want to show that Tpf is linear.

Tpf([p, φ, v] + [p, φ, w]) = Dpf([p, φ, v + w])

= [f(p), ψ,Dφ(p)ψ ◦ f ◦ φ−1(v + w)]

= [p, φ,Dφ(p)ψ ◦ f ◦ φ−1(v) +Dφ(p)ψ ◦ f ◦ φ−1(w)]

= [p, φ,Dφ(p)ψ ◦ f ◦ φ−1(v)] + [p, φ,Dφ(p)ψ ◦ f ◦ φ−1(w)]

= Tpf([p, φ, v]) + Tpf([p, φ, w])

�

(5) Chain rule: for Ck maps f : M → N , g : N → L and a point p ∈M ,

Tp(g ◦ f) = Tf(p)g ◦ Tpf.

In particular, if f is a diffeo, then Tpf has inverse (Tpf)−1 = Tf(p)(f
−1).

Solution. Here we consider the following charts : φ for the point p, ψ for the
point f(p) and η for g(f(p)). We check that

Tp(g ◦ f)([p, φ, v]) = [g ◦ f(p), ψ,Dφ(p)(ψ ◦ (g ◦ f) ◦ φ−1)(v)]
3
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coincides with

Tf(p)g ◦ Tpf([p, φ, v]) = Tf(p)g([f(p), ψ,Dφ(p)(ψ ◦ f ◦ φ−1)(v)])

= [g(f(p)), η,Dψ◦f(p)(η ◦ g ◦ h−1)(Dφ(p)(ψ ◦ f ◦ φ−1)(v))]

= [g ◦ f(p), η,Dφ(p)(η ◦ (g ◦ f) ◦ φ−1(v))].

Before continuing, let us prove that for any manifold M and any p ∈ M
we have Tp(IdM ) = idTpM . To see this we take a chart φ : W → U that is
defined at p and compute

Tp(idM )([p, φ, v]) = [p, φ,Dφ(p)(φ◦idM◦φ−1)(v)] = [p, φ,Dφ(p)(idU )v] = [p, φ, idRnv] = [p, φ, v].

Now let f : M → N be a diffeomorphism, and let p ∈ M and q = f(p) ∈
N . Then, applying the chain rule to the equation f−1 ◦ f = idM we get

Tqf
−1 ◦ Tpf = TpidM = idTpM .

Similarly, from f ◦ f−1 = idN we obtain

Tpf ◦ Tqf−1 = TqidN = idTqN .

We conclude that Tpf is invertible, with inverse Tqf
−1. �

(6) Change of coordinates: Let X ∈ TpM be a tangent vector and let ϕ, ϕ̃ be

Ck charts of M defined at a p. Let (Xi)i be coordinate tuple of X with

respect to the basis
(

∂
∂ϕi

∣∣
p

)
i
, and let (X̃j)j be the coordinate tuple of X

with respect the basis
(

∂
∂ϕ̃j

∣∣
p

)
j
, so that

X =
∑
i

Xi ∂

∂ϕi

∣∣∣
p

=
∑
j

X̃j ∂

∂ϕ̃j

∣∣∣
p
.

Show that

X̃j =
∑
i

Xi∂ϕ̃
j

∂ϕi

∣∣∣
ϕ(p)

,

where ∂ϕ̃j

∂ϕi

∣∣∣
ϕ(p)

is the partial derivative that appears in the position (j, i) of

the Jacobian matrix Jϕ(p)(ϕ̃ ◦ ϕ−1) : Rn → Rn.

Solution. Using the equation ∂
∂ϕi

=
∑

j
∂ϕ̃j

∂ϕi
∂
∂ϕ̃j

, we get

X =
∑
i

Xi ∂

∂ϕi
=
∑
i

Xi
∑
j

∂ϕ̃j

∂ϕi
∂

∂ϕ̃j
=
∑
j

∑
i

Xi ∂ϕ̃
j

∂ϕi
∂

∂ϕ̃j

Since on the other hand we have

X =
∑
j

X̃j ∂

∂ϕ̃j

and the vectors ∂
∂ϕ̃j

are linearly independent, we conclude that

X̃j =
∑
i

Xi ∂ϕ̃
j

∂ϕi

Donc la morale c’est que nous pouvons exprimer les coefficiens des vecteurs
tangents d’une base par rapport à une autre base en utilisant les coefficients
(j, i) de la matrice de la transformation linéaire Dϕ(p)(ϕ̃ ◦ ϕ−1). �

Exercise 3.5 (Velocity vectors of curves). Let M be a Ck differentiable manifold.
The velocity vector of a differentiable curve γ : I ⊆ R → M at an instant t ∈ I is
the vector γ′(t) := Ttγ(1|t) ∈ Tγ(t)M . (Here the 1|t represents the element [t, idI , 1]
of TtI ' R.)

Show that for any tangent vector X ∈ TM there exists a Ck curve γ : (−ε, ε)→M
such that γ′(0) = X.

4
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Solution. By definition we have γ′(t) := Ttγ[t, idU , 1] ∈ Tγ(0)M
Note that the equation γ′(0) = X implies that γ(0) = p.

Write X = [p, ϕ, v], where p ∈ M and ϕ is a Ck chart of M that is defined at p,
and v ∈ Rn. If ε > 0 is small enough, we may define on the interval I = (−ε, ε) a
function γ : I →M by the formula

γ(t) = ϕ−1(ϕ(p) + tv).

In other words, γ is the function whose local expression g = γ|ϕidI with respect to

the charts idI of I and ϕ of M is g(t) = ϕ(p) + tv. Note that g′(t) = v for all t ∈ I.

Let us verify that γ′(0) = X. For all t ∈ I we have

γ′(t) = Ttγ[t, idI , 1] by definition of γ′(t)

= [γ(t), ϕ,Dt γ|idRϕ (1)] by definition of Ttγ

= [γ(t), ϕ, g′(t)]

In particular, γ′(0) = [p, ϕ, v] = X, as intended. �

Exercise 3.6 (Spherical coordinates on R3). Consider the following map defined
for (r, ϕ, θ) ∈W := R+ × (0, 2π)× (0, π):

Ψ(r, ϕ, θ) = (r cosϕ sin θ, r sinϕ sin θ, r cos θ) ∈ R3.

Check that Ψ is a diffeomorphism1 onto its image Ψ(W ) =: U . We can therefore
consider Ψ−1 as a smooth chart on R3 and it is common to call the component
functions of Ψ−1 the spherical coordinates (r, ϕ, θ).

Express the coordinate vectors of this chart

∂

∂r

∣∣∣
p
,
∂

∂ϕ

∣∣∣
p
,
∂

∂θ

∣∣∣
p

at some point p ∈ U in terms of the standard coordinate vectors ∂
∂x

∣∣
p
, ∂
∂y

∣∣
p
, ∂
∂z

∣∣
p
.

Solution. Consider the transition from spherical coordinates (r, ϕ, θ) to Cartesian
coordinates (x, y, z), given by the map

Ψ : W → U

(r, ϕ, θ) 7→ (x, y, z)

where 
x = r cosϕ sin θ

y = r sinϕ sin θ

z = r cos θ

Let p ∈ U . The general formula for the change of coordinates is

∂

∂ψi

∣∣∣
p

=
∑
j

∂

∂ψi

∣∣∣
p
ψ̃j

∂

∂ψ̃j

∣∣∣
p
.

We apply this formula in the current setting where ψ = Ψ−1 is the given chart on U

(by abuse of notation we denote its coordinate functions by (r, ϕ, θ)) and ψ̃ = idR3

1Here “diffeomorphism” is meant in the standard sense of maps between open subsets of R3.
The inverse function theorem can be useful here.
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(we denote its coordinate functions by (x, y, z)). Then for p ∈ U we have2

∂

∂r

∣∣∣
p

=
∂x

∂r

∂

∂x

∣∣∣
p

+
∂y

∂r

∂

∂y

∣∣∣
p

+
∂z

∂r

∂

∂z

∣∣∣
p

= cosϕ sin θ
∂

∂x

∣∣∣
p

+ sinϕ sin θ
∂

∂y

∣∣∣
p

+ cos θ
∂

∂z

∣∣∣
p

=
1

(x2 + y2 + z2)1/2

(
x
∂

∂x

∣∣∣
p

+ y
∂

∂y

∣∣∣
p

+ z
∂

∂z

∣∣∣
p

)
∂

∂ϕ

∣∣∣
p

=
∂x

∂ϕ

∂

∂x

∣∣∣
p

+
∂y

∂ϕ

∂

∂y

∣∣∣
p

+
∂z

∂ϕ

∂

∂z

∣∣∣
p

= −r sinϕ sin θ
∂

∂x

∣∣∣
p

+ r cosϕ sin θ
∂

∂y

∣∣∣
p

= −y ∂
∂x

∣∣∣
p

+ x
∂

∂y

∣∣∣
p

∂

∂θ

∣∣∣
p

=
∂x

∂θ

∂

∂x

∣∣∣
p

+
∂y

∂θ

∂

∂y

∣∣∣
p

+
∂z

∂θ

∂

∂z

∣∣∣
p

= r cosϕ cos θ
∂

∂x

∣∣∣
p

+ r sinϕ cos θ
∂

∂y

∣∣∣
p
− r sin θ

∂

∂z

∣∣∣
p

=
xz

(x2 + y2)
1
2

∂

∂x

∣∣∣
p

+
yz

(x2 + y2)
1
2

∂

∂y

∣∣∣
p
− (x2 + y2)

1
2
∂

∂z

∣∣∣
p

�

Exercise 3.7 (The tangent plane of the sphere). Consider the inclusion ι : S2 → R3,
where we endow both spaces with the standard smooth structure. Let p ∈ S2. What
is the image of Dpι : TpS

2 → TpR3? (Identify TpR3 with R3 in the standard way.
So the result should be the equation for a plane in R3.)

Hint: Use Exercise 6 on spherical coordinates.

Solution. Let p ∈ S2 and let us use spherical coordinates to parametrize a neigh-
borhood of p. Define the map Ψ(ϕ, θ) = (cosϕ sin θ, sinϕ sin θ, cos θ) from W =
(0, 2π) × (0, π) to U = Ψ(W ). For simplicity we assume that p ∈ U (otherwise we
just take τ ◦Ψ instead of Ψ, where τ is a rotation of R3).

Then Ψ−1 is a smooth local chart for the sphere and, denoting its coordinate
functions by (ϕ, θ), a basis of the tangent space TpS2 is given by ∂

∂ϕ

∣∣
p
, ∂∂θ
∣∣
p
.

Now Tpι : TpS2 → TpR3 sends ∂
∂ϕ

∣∣
p
, ∂∂θ
∣∣
p

to the corresponding coordinate vectors3

∂
∂ϕ

∣∣
p
, ∂∂θ
∣∣
p

of the spherical coordinates on R3. We have already seen the expression

in cartesian coordinates for the latter (here p = (x, y, z)T ):

∂

∂ϕ

∣∣∣
p

= −y ∂
∂x

∣∣∣
p

+ x
∂

∂y

∣∣∣
p

∂

∂θ

∣∣∣
p

=
xz

(x2 + y2)
1
2

∂

∂x

∣∣∣
p

+
yz

(x2 + y2)
1
2

∂

∂y

∣∣∣
p
− (x2 + y2)1/2

∂

∂z

∣∣∣
p
.

2There is a bit of abuse of notation going on; e.g. ∂x
∂r

really means ∂
∂r

|p(x), i.e. the coordinate

vector ∂
∂r

applied to the function x : R3 → R and this by definition is ∂(r cosϕ sin θ)
∂r

|ψ(p). The
potentially confusing thing here is that r denotes at the same time the first component of the chart
ψ (in the lecture this was ϕi) and the coordinate on the image of the chart in R3 (in the lecture this
was xi). But this sloppiness is common and actually helps with computations as you see above.

3Note that while these tangent vectors have the same symbol, they really are different objects
(the latter acts on functions defined on (an open subset of) R3, the former on functions defined
on (an open subset of) S2: To make the distinction clear, let us denote the spherical coordinate

chart on R3 by (r, ϕ, θ). Then the statement in the text reads ι∗
∂
∂ϕ

∣∣
p

= ∂
∂ϕ

∣∣
p
, ι∗

∂
∂θ

∣∣
p

= ∂

∂θ

∣∣
p
. But

with respect to the chart (ϕ, θ) on S2 and (r, ϕ, θ) on R3, the coordinate representation ι̂ of ι is just
ι̂(ϕ, θ) = (1, ϕ, θ) and so the result follows by looking at the Jacobian of ι̂.

6
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Under the “standard identification” of TpR3 with R3 discussed in the lecture, the

first coordinate vector ∂
∂x

∣∣∣
p

corresponds to e0 = (1, 0, 0)T , etc.

So under this identification ∂
∂ϕ

∣∣
p
, ∂
∂θ

∣∣
p

span the plane

span
{

(−y, x, 0)T , (xz, yz,−(x2 + y2))T )
}
.

Clearly the vector p = (x, y, z)T is perpendicular to this plane and hence an equation
for the latter is

Tpι(TpS2) = {v ∈ R3 : p · v = 0}.
�
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