Introduction to Differentiable Manifolds	
$EPFL - Fall \ 2021$	M. Cossarini, B. Santos Correia
Exercise series 3, with solutions	2021 – 10 – 19

Note: Here we will use the notation $T_p f$ rather than $D_p f$ to denote the differential of a map f between manifolds. The symbol $D_p f$ will only be used to denote the usual differential, defined when f is a map between open subsets of Euclidean spaces.

Exercise 3.1. Prove that for any open cover $\mathcal{U} = \{U_j\}_{j \in J}$ of a \mathcal{C}^k manifold M there exists a partition of unity $(\xi_j)_{j \in J}$ such that $\operatorname{supp}(\xi_j) \subseteq U_j$ for all j.

Solution. This theorem is a second version of the theorem of existence of partitions of unity. By the first version of the theorem, there exists a partition of unity $(\eta_i)_{i \in I}$ where each η_i has its support $\operatorname{supp}(\eta_i)$ contained in U_j for some $j = f(i) \in J$. (We also know that $\operatorname{supp}(\eta_i)$ compact, but that is not useful for the proof.) Note that the functions η_i may be many more than the sets U_j . For example, if M is noncompact, since the compact supports $\operatorname{supp}(\eta_i)$ cover M, we see that I is infinite even if J is finite.

However, we can "group" the functions η_i as follows. For each $j \in J$ let $I_j = \{i \in I : f(i) = j\}$. The sets $(I_j)_{j \in J}$ form a partition of I, i.e., each $i \in I$ is contained in exactly one of the sets I_j (namely, when j = f(i)).

Define for each $j \in J$ the function $\xi_j = \sum_{i \in I_j} \eta_i$. This function ξ_j is \mathcal{C}^k because locally it is a finite sum of \mathcal{C}^k functions. The functions η_j are \mathcal{C}^k and form a partition of unity because

$$\sum_{j \in J} \xi_j = \sum_{j \in J} \sum_{i \in I_j} \eta_i = \sum_{i \in I} \eta_i = 1$$

To finish, we must check that each ξ_i is supported on U_i . And indeed,

$$\operatorname{supp}(\xi_j) = \bigcup_{i \in I_j} \{ x \in \mathbb{R} : \eta_i(x) > 0 \} \subseteq \bigcup_{i \in I_j} \overline{\{ x \in \mathbb{R} : \eta_i(x) > 0 \}} = \bigcup_{i \in I_j} \operatorname{supp}(\eta_i)$$

Here we are using again the local finiteness of the family $(\operatorname{supp}(\eta_i))_{i \in I}$. In general, if $(A_i)_i$ is a family of subsets of a topological space, then we have just an inclusion $\overline{\bigcup A_i} \supseteq \bigcup_i \overline{A_i}$. The equality holds, for instance, if the family $(A_i)_i$ is locally finite, which is the case here.

Exercise 3.2. A continuous map $f: X \to Y$ is called *proper* if $f^{-1}(K)$ is compact for every compact set $K \subseteq Y$. Show that for every \mathcal{C}^k manifold M there exists a \mathcal{C}^k map $f: M \to [0, +\infty)$ that is proper.

Hint: Note that f must be unbounded unless M is compact. Use a function of the form $f = \sum_{i \in \mathbb{N}} c_i f_i$, where $(f_i)_{i \in \mathbb{N}}$ is a partition of unity and the c_i 's are real numbers.

Solution. Let $(U_i)_{i\in\mathbb{N}}$ be a countable topological basis for M such that $\overline{U_i}$ is compact for each i. Let (f_i) be a \mathcal{C}^k partition of unity on M such that $\operatorname{supp}(f_i) \subseteq U_i$ for each i. Define the \mathcal{C}^k function $f: M \to \mathbb{R}$ by the formula $f(x) = \sum_{i\in\mathbb{N}} c_i f_i(x)$, where $c_i \geq 0$ are numbers satisfying $\lim_{i\to\infty} c_i = +\infty$. (For instance, we may put $c_i = i$.)

We can view f(x) as a weighted average of the numbers c_i , using as weights the coefficients $f_i(x) \ge 0$, which satisfy $\sum_i f_i(x) = 1$. In particular, note that if $I_x \subseteq \mathbb{N}$ is the set of indices such that U_i contains the point x, then any upper or lower bound for the numbers c_i with $i \in I_x$ is also an upper or lower bound for f(x). It follows that if f(x) < c, then x is contained in the union of the first few U_i 's which satisfy $c_i < c$.

To see that f is proper, let $K \subseteq \mathbb{R}$ be a compact set. Take any number $c \geq 0$ such that $K \subseteq (-c, c)$, and let $i_c \in \mathbb{N}$ such that $c_i \geq c$ for $i \geq i_c$. The preimage $f^{-1}(K)$ consists of points x satisfying f(x) < c, and is therefore contained in the compact set $\bigcup_{i < i_c} \overline{U_i}$. Since the set $f^{-1}(K)$ is closed, we conclude that it is compact. \Box

Exercise 3.3. Let M be a \mathcal{C}^k manifold and let U be an open neighborhood of the set $M \times \{0\}$ in the space $M \times [0, +\infty)$. Show that there exists a \mathcal{C}^k function $f: M \to (0, +\infty)$ whose graph is contained in U.

Solution. Every point $\{x\} \times \{0\}$ of the set $M \times \{0\}$ has a neighborhood $V \times [0, \varepsilon)$ contained in U, where $V \subseteq M$ is an open neighborhood of x and $\varepsilon > 0$. Thus there is a covering of M by open sets V_i and numbers $\varepsilon_i > 0$ such that $V_i \times [0, \varepsilon_i) \subseteq U$ for all i. Let $(f_i)_i$ be a partition of unity with $\operatorname{supp}(f_i) \subseteq U_i$. Then we can take the \mathcal{C}^k function $f = \sum_i \frac{\varepsilon_i}{2} f_i$.

Exercise 3.4. Let M be a \mathcal{C}^k -differentiable *n*-manifold. Show that:

$$(p, \phi, v) \sim (q, \psi, w) \quad \iff \quad q = p \quad \text{and} \quad w = \mathcal{D}_{\phi(p)}(\psi \phi^{-1})(v)$$

is an equivalence relation between coordinatized tangent vectors.

Solution. Let us check that \sim is an equivalence relation:

• reflexivity: Let (p, ϕ, v) be a coordinatized tangent vector, with ϕ : $W \to U$. To see that $(p, \phi, v) \sim (p, \phi, v)$, we compute

$$D_{\phi(p)}(\phi \circ \phi^{-1})(v) = D_{\phi(p)}(\mathrm{id}_U)(v) = \mathrm{id}_{\mathbb{R}^n}(v) = v$$

• symmetry : Suppose that $(p, \phi, v) \sim (q, \psi, w)$. This means that p = q and $w = D_{\psi(p)}(\psi \circ \phi^{-1})(v)$. Therefore

$$D_{\psi(q)}(\phi \psi^{-1})(w) = D_{\psi(q)}(\phi \psi^{-1})(D_{\phi(p)}(\psi \phi^{-1})(v))$$

= $D_{\phi(p)}((\phi \psi^{-1}) \circ (\psi \phi^{-1}))(v)$
= $D_{\phi(p)}(\mathrm{id}_U)(v) = v$

which implies that $(q, \psi, w) \sim (p, \phi, v)$.

• transitivity:

Suppose that $(p, \phi, v) \sim (q, \psi, w)$ and $(q, \psi, w) \sim (r, \eta, z)$. We know from the first relation that p = q and $D_{\phi(p)}(\psi \circ \phi^{-1})(v) = w$; from the second relation we know that q = r and $D_{\psi(q)}(\eta \circ \psi^{-1})(w) = z$. Then we observe that p = r and by the chain rule,

$$D_{\phi(p)}(\eta \phi^{-1})(v) = D_{\phi(p)}((\eta \psi^{-1}) \circ (\psi \phi^{-1}))(v)$$

= $D_{\psi(p)}(\eta \psi^{-1})((D_{\phi(p)}(\psi \phi^{-1})(v)))$
= $D_{\psi(p)}(\eta \circ \psi^{-1})(w) = z$

We conclude that $(p, \phi, v) \sim (r, \eta, z)$.

- (2) Fixed a point $p \in M$ and a \mathcal{C}^k chart φ defined on p, the function $\mathbb{R}^n \to T_p M$ sending $v \mapsto [p, \varphi, v]$ is a bijection.

Solution. The function defined in this point has been defined in the course and it was denoted by ι (we will keep this notation here).

• Injectivity:

Let $v, v' \in \mathbb{R}^n$ such that $\iota(v) = \iota(v')$. Thus $(p, \phi, v) \sim (p, \phi, v')$. It follows that $v' = D_{\phi(p)}(\phi \circ \phi^{-1})(v) = D_{\phi(p)}(\mathrm{id}_U)(v) = \mathrm{id}_{\mathbb{R}^n}(v) = v$ where U is the image of ϕ .

• Surjectivity:

Let $[p, \psi, w] \in T_p M$, we want to find a $v \in \mathbb{R}^n$ such that $\iota(v) = [p, \psi, w]$. We have to ensure $[p, \phi, v] = [p, \psi, w]$, which means that $(p, \phi, v) \sim (p, \psi, w)$. It suffices to put $v = D_{\psi(p)}(\phi \circ \psi^{-1})(w)$.

(3) Vector addition and scalar multiplication are well defined and make T_pM a real vector space of dimension n.

Solution. We have to show that the sum $[p, \phi, v] + [p, \phi, w] = [p, \phi, v + w]$ is well defined, i.e., it does not depend on the representatives we take of the equivalence classes $[p, \phi, v]$ and $[p, \phi, w]$. Initially we have the representatives (p, ϕ, v) and (p, ϕ, w) , and we take a second set of representatives using a different chart ψ , i.e.,

$$(p, \phi, v) \sim (p, \psi, \overline{v})$$
 and $(p, \phi, w) \sim (p, \psi, \overline{w}).$

and we have to show that $(p, \phi, v + w) \sim (p, \psi, \overline{v} + \overline{w})$. We compute

$$\overline{v} + \overline{w} = D_{\phi(p)}(\psi \circ \phi^{-1})(v) + D_{\phi(p)}(\psi \circ \phi^{-1})(w) = D_{\phi(p)}(\psi \circ \phi^{-1})(v+w).$$

We can use the same idea to show that scalar multiplication $\lambda [p, \phi, v] = [p, \phi, \lambda v]$ is well defined.

(4) The differential of a \mathcal{C}^k map $f: M \to N$ at a point $p \in M$ is a well-defined linear map $T_p f: T_p M \to T_p N$.

Solution. We want to show that the map $T_p f$ is well defined.

We take two representatives of the class $[p, \phi, v]$: $(p, \phi, v) \sim (p, \overline{\phi}, \overline{v})$, then we apply $D_p f$ on both of them and we get:

$$T_p f(p, \phi, v) = (f(p), \psi, \underbrace{D_{f(p)}(\psi \circ f \circ \phi^{-1})(v)}_{a})$$
$$T_p f(p, \overline{\phi}, \overline{v}) = (f(p), \overline{\psi}, \underbrace{D_{\overline{f}(p)}(\overline{\psi} \circ f \circ \overline{\phi}^{-1})(\overline{v})}_{b})$$

We will show that the resulting expressions represent the same tangent vector by checking that $D_{\psi \circ f(p)}(\overline{\psi} \circ \psi^{-1})(a) = b$. We compute

 $\begin{aligned} D_{\psi \circ f(p)}(\overline{\psi} \circ \psi^{-1})(D_{f(p)}(\psi \circ f \circ \phi^{-1})(v)) &= D_{\phi(p)}(\overline{\psi} \circ f \circ \phi^{-1}(v)) \\ &= D_{\phi(p)}(\overline{\psi} \circ f \circ \phi^{-1}(D_{\overline{\phi}(p)}(\phi \circ \overline{\phi}^{-1})(\overline{v}))) \\ &= D_{\overline{\phi}(p)}(\overline{\psi} \circ f \circ \overline{\phi}^{-1})(\overline{v}). \end{aligned}$

This concludes the proof.

Now we want to show that $T_p f$ is linear.

$$T_p f([p, \phi, v] + [p, \phi, w]) = D_p f([p, \phi, v + w])$$

= $[f(p), \psi, D_{\phi(p)}\psi \circ f \circ \phi^{-1}(v + w)]$
= $[p, \phi, D_{\phi(p)}\psi \circ f \circ \phi^{-1}(v) + D_{\phi(p)}\psi \circ f \circ \phi^{-1}(w)]$
= $[p, \phi, D_{\phi(p)}\psi \circ f \circ \phi^{-1}(v)] + [p, \phi, D_{\phi(p)}\psi \circ f \circ \phi^{-1}(w)]$
= $T_p f([p, \phi, v]) + T_p f([p, \phi, w])$

(5) Chain rule: for \mathcal{C}^k maps $f: M \to N, g: N \to L$ and a point $p \in M$,

$$T_p(g \circ f) = T_{f(p)}g \circ T_p f$$

In particular, if f is a diffeo, then $T_p f$ has inverse $(T_p f)^{-1} = T_{f(p)}(f^{-1})$. Solution. Here we consider the following charts : ϕ for the point p, ψ for the point f(p) and η for g(f(p)). We check that

$$T_p(g \circ f)([p, \phi, v]) = [g \circ f(p), \psi, D_{\phi(p)}(\psi \circ (g \circ f) \circ \phi^{-1})(v)]$$
3

coincides with

$$\begin{split} T_{f(p)}g \circ T_p f([p,\phi,v]) &= T_{f(p)}g([f(p),\psi,D_{\phi(p)}(\psi \circ f \circ \phi^{-1})(v)]) \\ &= [g(f(p)),\eta,D_{\psi \circ f(p)}(\eta \circ g \circ h^{-1})(D_{\phi(p)}(\psi \circ f \circ \phi^{-1})(v))] \\ &= [g \circ f(p),\eta,D_{\phi(p)}(\eta \circ (g \circ f) \circ \phi^{-1}(v))]. \end{split}$$

Before continuing, let us prove that for any manifold M and any $p \in M$ we have $T_p(Id_M) = id_{T_pM}$. To see this we take a chart $\phi : W \to U$ that is defined at p and compute

 $T_p(\mathrm{id}_M)([p,\phi,v]) = [p,\phi, D_{\phi(p)}(\phi \circ \mathrm{id}_M \circ \phi^{-1})(v)] = [p,\phi, D_{\phi(p)}(\mathrm{id}_U)v] = [p,\phi, \mathrm{id}_{\mathbb{R}^n}v] = [p,\phi,v].$

Now let $f: M \to N$ be a diffeomorphism, and let $p \in M$ and $q = f(p) \in$

N. Then, applying the chain rule to the equation $f^{-1} \circ f = \mathrm{id}_M$ we get

$$T_q f^{-1} \circ T_p f = T_p \mathrm{id}_M = \mathrm{id}_{T_p M}.$$

Similarly, from $f \circ f^{-1} = \mathrm{id}_N$ we obtain

$$T_p f \circ T_q f^{-1} = T_q \operatorname{id}_N = \operatorname{id}_{T_q N}.$$

We conclude that $T_p f$ is invertible, with inverse $T_q f^{-1}$.

(6) Change of coordinates: Let $X \in T_p M$ be a tangent vector and let φ , $\tilde{\varphi}$ be \mathcal{C}^k charts of M defined at a p. Let $(X^i)_i$ be coordinate tuple of X with respect to the basis $\left(\frac{\partial}{\partial \varphi^i}\Big|_p\right)_i$, and let $(\tilde{X}^j)_j$ be the coordinate tuple of X with respect the basis $\left(\frac{\partial}{\partial \tilde{\varphi^j}}\Big|_p\right)_i$, so that

$$X = \sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}} \Big|_{p} = \sum_{j} \widetilde{X}^{j} \frac{\partial}{\partial \widetilde{\varphi}^{j}} \Big|_{p}.$$

Show that

$$\widetilde{X}^{j} = \sum_{i} X^{i} \frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}} \Big|_{\varphi(p)},$$

where $\frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}}\Big|_{\varphi(p)}$ is the partial derivative that appears in the position (j, i) of the Jacobian matrix $J_{\varphi(p)}(\widetilde{\varphi} \circ \varphi^{-1}) : \mathbb{R}^{n} \to \mathbb{R}^{n}$.

Solution. Using the equation $\frac{\partial}{\partial \varphi^i} = \sum_j \frac{\partial \tilde{\varphi}^j}{\partial \varphi^i} \frac{\partial}{\partial \tilde{\varphi}^j}$, we get

$$X = \sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}} = \sum_{i} X^{i} \sum_{j} \frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}} \frac{\partial}{\partial \widetilde{\varphi}^{j}} = \sum_{j} \sum_{i} X^{i} \frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}} \frac{\partial}{\partial \widetilde{\varphi}^{j}}$$

Since on the other hand we have

$$X = \sum_{j} \widetilde{X}^{j} \frac{\partial}{\partial \widetilde{\varphi}^{j}}$$

and the vectors $\frac{\partial}{\partial \widetilde{\varphi}^j}$ are linearly independent, we conclude that

$$\widetilde{X}^j = \sum_i X^i \, \frac{\partial \widetilde{\varphi}^j}{\partial \varphi^i}$$

Donc la morale c'est que nous pouvons exprimer les coefficients des vecteurs tangents d'une base par rapport à une autre base en utilisant les coefficients (j,i) de la matrice de la transformation linéaire $D_{\varphi(p)}(\tilde{\varphi} \circ \varphi^{-1})$.

Exercise 3.5 (Velocity vectors of curves). Let M be a \mathcal{C}^k differentiable manifold. The velocity vector of a differentiable curve $\gamma : I \subseteq \mathbb{R} \to M$ at an instant $t \in I$ is the vector $\gamma'(t) := T_t \gamma(1|_t) \in T_{\gamma(t)} M$. (Here the $1|_t$ represents the element $[t, \mathrm{id}_I, 1]$ of $T_t I \simeq \mathbb{R}$.)

Show that for any tangent vector $X \in TM$ there exists a \mathcal{C}^k curve $\gamma : (-\varepsilon, \varepsilon) \to M$ such that $\gamma'(0) = X$.

Solution. By definition we have $\gamma'(t) := T_t \gamma[t, \mathrm{id}_U, 1] \in T_{\gamma(0)}M$

Note that the equation $\gamma'(0) = X$ implies that $\gamma(0) = p$.

Write $X = [p, \varphi, v]$, where $p \in M$ and φ is a \mathcal{C}^k chart of M that is defined at p, and $v \in \mathbb{R}^n$. If $\varepsilon > 0$ is small enough, we may define on the interval $I = (-\varepsilon, \varepsilon)$ a function $\gamma: I \to M$ by the formula

$$\gamma(t) = \varphi^{-1}(\varphi(p) + tv).$$

In other words, γ is the function whose local expression $g = \gamma |_{\mathrm{id}_I}^{\varphi}$ with respect to the charts id_I of I and φ of M is $g(t) = \varphi(p) + tv$. Note that g'(t) = v for all $t \in I$.

Let us verify that $\gamma'(0) = X$. For all $t \in I$ we have

$$\begin{aligned} \gamma'(t) &= T_t \gamma[t, \mathrm{id}_I, 1] \quad \text{by definition of } \gamma'(t) \\ &= [\gamma(t), \varphi, \mathrm{D}_t \gamma|_{\varphi}^{\mathrm{id}_{\mathbb{R}}}(1)] \quad \text{by definition of } T_t \gamma \\ &= [\gamma(t), \varphi, g'(t)] \end{aligned}$$

In particular, $\gamma'(0) = [p, \varphi, v] = X$, as intended.

Exercise 3.6 (Spherical coordinates on \mathbb{R}^3). Consider the following map defined for $(r, \varphi, \theta) \in W := \mathbb{R}^+ \times (0, 2\pi) \times (0, \pi)$:

$$\Psi(r,\varphi,\theta) = (r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta) \in \mathbb{R}^3.$$

Check that Ψ is a diffeomorphism¹ onto its image $\Psi(W) =: U$. We can therefore consider Ψ^{-1} as a smooth chart on \mathbb{R}^3 and it is common to call the component functions of Ψ^{-1} the spherical coordinates (r, φ, θ) .

Express the coordinate vectors of this chart

$$\frac{\partial}{\partial r}\Big|_p, \frac{\partial}{\partial \varphi}\Big|_p, \frac{\partial}{\partial \theta}\Big|_p$$

at some point $p \in U$ in terms of the standard coordinate vectors $\frac{\partial}{\partial x}\Big|_{p}, \frac{\partial}{\partial y}\Big|_{p}, \frac{\partial}{\partial z}\Big|_{p}$.

Solution. Consider the transition from spherical coordinates (r, φ, θ) to Cartesian coordinates (x, y, z), given by the map

$$\begin{array}{rcl} \Psi: W & \to & U \\ (r, \varphi, \theta) & \mapsto & (x, y, z) \end{array}$$

where

$$\begin{cases} x = r \cos \varphi \sin \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \theta \end{cases}$$

Let $p \in U$. The general formula for the change of coordinates is

$$\frac{\partial}{\partial \psi^i}\Big|_p = \sum_j \frac{\partial}{\partial \psi^i}\Big|_p \widetilde{\psi}^j \frac{\partial}{\partial \widetilde{\psi}^j}\Big|_p.$$

We apply this formula in the current setting where $\psi = \Psi^{-1}$ is the given chart on U (by abuse of notation we denote its coordinate functions by (r, φ, θ)) and $\psi = id_{\mathbb{R}^3}$

¹Here "diffeomorphism" is meant in the standard sense of maps between open subsets of \mathbb{R}^3 . The inverse function theorem can be useful here.

(we denote its coordinate functions by (x, y, z)). Then for $p \in U$ we have²

$$\begin{split} \frac{\partial}{\partial r}\Big|_{p} &= \frac{\partial x}{\partial r}\frac{\partial}{\partial x}\Big|_{p} + \frac{\partial y}{\partial r}\frac{\partial}{\partial y}\Big|_{p} + \frac{\partial z}{\partial r}\frac{\partial}{\partial z}\Big|_{p} \\ &= \cos\varphi\sin\theta\frac{\partial}{\partial x}\Big|_{p} + \sin\varphi\sin\theta\frac{\partial}{\partial y}\Big|_{p} + \cos\theta\frac{\partial}{\partial z}\Big|_{p} \\ &= \frac{1}{(x^{2}+y^{2}+z^{2})^{1/2}}\Big(x\frac{\partial}{\partial x}\Big|_{p} + y\frac{\partial}{\partial y}\Big|_{p} + z\frac{\partial}{\partial z}\Big|_{p}\Big) \\ \frac{\partial}{\partial \varphi}\Big|_{p} &= \frac{\partial x}{\partial \varphi}\frac{\partial}{\partial x}\Big|_{p} + \frac{\partial y}{\partial \varphi}\frac{\partial}{\partial y}\Big|_{p} + \frac{\partial z}{\partial \varphi}\frac{\partial}{\partial z}\Big|_{p} \\ &= -r\sin\varphi\sin\theta\frac{\partial}{\partial x}\Big|_{p} + r\cos\varphi\sin\theta\frac{\partial}{\partial y}\Big|_{p} \\ &= -y\frac{\partial}{\partial x}\Big|_{p} + x\frac{\partial}{\partial y}\Big|_{p} \\ \frac{\partial}{\partial \theta}\Big|_{p} &= \frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}\Big|_{p} + \frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}\Big|_{p} + \frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\Big|_{p} \\ &= r\cos\varphi\cos\theta\frac{\partial}{\partial x}\Big|_{p} + r\sin\varphi\cos\theta\frac{\partial}{\partial y}\Big|_{p} - r\sin\theta\frac{\partial}{\partial z}\Big|_{p} \\ &= \frac{xz}{(x^{2}+y^{2})^{\frac{1}{2}}}\frac{\partial}{\partial x}\Big|_{p} + \frac{yz}{(x^{2}+y^{2})^{\frac{1}{2}}}\frac{\partial}{\partial y}\Big|_{p} - (x^{2}+y^{2})^{\frac{1}{2}}\frac{\partial}{\partial z}\Big|_{p} \end{split}$$

Exercise 3.7 (The tangent plane of the sphere). Consider the inclusion $\iota: S^2 \to \mathbb{R}^3$, where we endow both spaces with the standard smooth structure. Let $p \in S^2$. What is the image of $D_p \iota: T_p S^2 \to T_p \mathbb{R}^3$? (Identify $T_p \mathbb{R}^3$ with \mathbb{R}^3 in the standard way. So the result should be the equation for a plane in \mathbb{R}^3 .)

Hint: Use Exercise 6 on spherical coordinates.

Solution. Let $p \in \mathbb{S}^2$ and let us use spherical coordinates to parametrize a neighborhood of p. Define the map $\Psi(\varphi, \theta) = (\cos \varphi \sin \theta, \sin \varphi \sin \theta, \cos \theta)$ from $W = (0, 2\pi) \times (0, \pi)$ to $U = \Psi(W)$. For simplicity we assume that $p \in U$ (otherwise we just take $\tau \circ \Psi$ instead of Ψ , where τ is a rotation of \mathbb{R}^3).

Then Ψ^{-1} is a smooth local chart for the sphere and, denoting its coordinate functions by (φ, θ) , a basis of the tangent space $T_p \mathbb{S}^2$ is given by $\frac{\partial}{\partial \varphi}\Big|_p, \frac{\partial}{\partial \theta}\Big|_p$.

Now $T_p\iota: T_p\mathbb{S}^2 \to T_p\mathbb{R}^3$ sends $\frac{\partial}{\partial \varphi}\Big|_p, \frac{\partial}{\partial \theta}\Big|_p$ to the corresponding coordinate vectors³ $\frac{\partial}{\partial \varphi}\Big|_p, \frac{\partial}{\partial \theta}\Big|_p$ of the spherical coordinates on \mathbb{R}^3 . We have already seen the expression in cartesian coordinates for the latter (here $p = (x, y, z)^T$):

$$\begin{split} &\frac{\partial}{\partial\varphi}\Big|_{p} = -y\frac{\partial}{\partial x}\Big|_{p} + x\frac{\partial}{\partial y}\Big|_{p} \\ &\frac{\partial}{\partial\theta}\Big|_{p} = \frac{xz}{(x^{2} + y^{2})^{\frac{1}{2}}}\frac{\partial}{\partial x}\Big|_{p} + \frac{yz}{(x^{2} + y^{2})^{\frac{1}{2}}}\frac{\partial}{\partial y}\Big|_{p} - (x^{2} + y^{2})^{1/2}\frac{\partial}{\partial z}\Big|_{p} \end{split}$$

²There is a bit of abuse of notation going on; e.g. $\frac{\partial x}{\partial r}$ really means $\frac{\partial}{\partial r}|_{p}(x)$, i.e. the coordinate vector $\frac{\partial}{\partial r}$ applied to the function $x : \mathbb{R}^{3} \to \mathbb{R}$ and this by definition is $\frac{\partial(r\cos\varphi\sin\theta)}{\partial r}|_{\psi(p)}$. The potentially confusing thing here is that r denotes at the same time the first component of the chart ψ (in the lecture this was φ^{i}) and the coordinate on the image of the chart in \mathbb{R}^{3} (in the lecture this was x^{i}). But this sloppiness is common and actually helps with computations as you see above.

³Note that while these tangent vectors have the same symbol, they really are different objects (the latter acts on functions defined on (an open subset of) \mathbb{R}^3 , the former on functions defined on (an open subset of) S^2 : To make the distinction clear, let us denote the spherical coordinate chart on \mathbb{R}^3 by $(\overline{r}, \overline{\varphi}, \overline{\theta})$. Then the statement in the text reads $\iota_* \frac{\partial}{\partial \varphi}\Big|_p = \frac{\partial}{\partial \overline{\varphi}}\Big|_p$, $\iota_* \frac{\partial}{\partial \theta}\Big|_p = \frac{\partial}{\partial \overline{\theta}}\Big|_p$. But with respect to the chart (φ, θ) on \mathbb{S}^2 and $(\overline{r}, \overline{\varphi}, \overline{\theta})$ on \mathbb{R}^3 , the coordinate representation $\hat{\iota}$ of ι is just $\hat{\iota}(\varphi, \theta) = (1, \varphi, \theta)$ and so the result follows by looking at the Jacobian of $\hat{\iota}$.

Under the "standard identification" of $T_p \mathbb{R}^3$ with \mathbb{R}^3 discussed in the lecture, the first coordinate vector $\frac{\partial}{\partial x}\Big|_p$ corresponds to $e_0 = (1, 0, 0)^T$, etc. So under this identification $\frac{\partial}{\partial \varphi}\Big|_p$, $\frac{\partial}{\partial \theta}\Big|_p$ span the plane

$${\rm span}\big\{(-y,x,0)^T,(xz,yz,-(x^2+y^2))^T)\big\}.$$

Clearly the vector $p = (x, y, z)^T$ is perpendicular to this plane and hence an equation for the latter is

$$T_p\iota(T_p\mathbb{S}^2) = \{ v \in \mathbb{R}^3 : p \cdot v = 0 \}.$$