Potential Theory

end of the 2nd part

Stellar orbits

1st part

Outlines

Ideal but useful models

- the infinite wire, the infinite slab
- infinite slab with oscillatory surface density, tightly wound spiral

Orbits

- some generalities

Lagrangian and Hamiltonian mechanics

- Euler-Lagrange equations
- Hamilton's equations

Orbits in spherical potentials

- angular momentum conservation
- equations of motion
- radial orbits
- non radial orbits

Examples

- Keplerian orbits
- Orbits in an homogeneous sphere
- Orbits in isochrone potentials

Potential Theory

Ideal but useful models

Potential of an infinite wire of constant linear density

$$\Phi(R) = 2 G \lambda_0 \ln(R) + C$$

Potential of an infinite slab of constant surface density

$$\Phi(z) = 2\pi G \Sigma_0 |z| + C$$

Potential of an infinite slab with an oscillatory surface density

$$\Phi(x, y, z) = -\frac{2\pi G \Sigma_1}{|\vec{k}|} \operatorname{Re}\left(e^{i\left(\vec{k} \cdot \vec{x}\right) - |\vec{k} z|}\right)$$

$$\phi_{o} = -\frac{2\pi G \Sigma_{o}}{|\kappa|}$$

Thus for
$$\Sigma(x,y) = \Sigma_{o} e^{ihx}$$

$$\phi(x,y,z) = -\frac{2\pi G\Sigma_{o}}{|\vec{k}|}$$

Note if the sortan density evolves as a place
wave
$$\Sigma(x,g,t) = \Sigma_{o} e^{i(hx - wt)}$$

$$\phi(x,y,z,t) = -\frac{2\pi G\Sigma_{o}}{|F|} e^{-i(Lx^{2}-wt)} - |F|$$

Potential of an Infinite slab $\Sigma(x) = \Sigma_0 + \Sigma_1 Re(e^{ikx})$ $k=5.0 \Sigma_0=1.0 \Sigma_1=0.0$

 ${\mathcal X}$

Potential of an Infinite slab $\Sigma(x) = \Sigma_0 + \Sigma_1 Re(e^{ikx})$ $k=5.0 \Sigma_0=1.0 \Sigma_1=1.0$

Potential of an infinite slab with a tightly wound spiral pattern

$$\Sigma(R,\phi) = \operatorname{Re}\left(H(R) e^{i(m \phi + f(R))}\right)$$

if
$$\left| \frac{\partial f}{\partial R} \cdot R \right| \ll 1$$
 WKB approximation

$$m=2$$

$$\Phi(R,\phi) = -\frac{2\pi G \Sigma_0}{\left|\frac{\partial f}{\partial R}\right|} \operatorname{Re}\left(H(R) e^{if(R) - \left|\frac{\partial f}{\partial R} \cdot z\right|}\right)$$

Potentiel of an infinite stab with a fightly would spiral pattern

$$E(R, \phi) = R_{e} \left(\begin{array}{c} \mu(R) \\ \text{slow recisive} \end{array} \right)^{100} \xrightarrow{100} \xrightarrow{10} \xrightarrow{100} \xrightarrow{10} \xrightarrow{100} \xrightarrow{10} \xrightarrow{100} \xrightarrow{10} \xrightarrow{10}$$

For
$$G = 0$$

 $\Sigma(R, 0) = M(R_0) \in e^{i \beta R_0} (R \cdot R_0)$
 $\Sigma(R, 0) = M(R_0) \in e^{i k x} \begin{cases} k = \frac{\partial \beta}{\partial R} \Big|_{R_0} \\ k = \frac{\partial \beta}{\partial R} \Big|_{R_0} \end{cases}$
We directely have the solution from the infinite slab
 $\Psi(R, G) = -\frac{2\pi G}{\left|\frac{\partial \beta}{\partial R}\right|} M(R_0) e^{i \beta (R_0)} e^{i \frac{\partial \beta}{\partial R} \Big|_{R_0} (R \cdot R_0)} e^{-\left|\frac{\partial \beta}{\partial R} \frac{\partial \beta}{\partial R}\right|}$
 $\frac{Chooss ing}{|k| = -\frac{2\pi G}{\left|\frac{\partial \beta}{\partial R}\right|} M(R) e^{i \beta (R_0)} e^{-\left|\frac{\partial \beta}{\partial R} \frac{\partial \beta}{\partial R}\right|}$

Validity of the approximation

· we want a large number of "oscillations"

over a small radius campared to R

~ R

1st part

Generalities

Why studying stellar orbits ?

- understand the motion of stars in stellar systems and galaxies
 - \rightarrow understand the observed kinematics
 - \rightarrow constraints the mass model

We will assume :

- a smoothed gravitational field
- time independent potentials

Definitions

 trajectory solution of the equation of motion $\ddot{\vec{x}} = -\vec{\nabla}\Phi(\vec{x})$ defined on a finite interval: $\vec{x}(t), \vec{x}(t_0) = \vec{x_0}, t \in [t_0, t_1]$ orbit a trajectory defined on an infinite time interval $\vec{x}(t), \vec{x}(t_0) = \vec{x_0}, t \in [-\infty, \infty[$ • periodic orbit a closed orbit

$$\forall t, \exists T, \vec{x}(t+T) = \vec{x}(t) \ \vec{v}(t+T) = \vec{v}(t)$$

• stationary point a point such that:

$$\ddot{\vec{x}} = \dot{\vec{x}} = 0$$

Lagrangian and Hamiltonian mechanics

Lagrangian Mechanics
Assume a mass point moving in a
force field
$$\vec{F}(\vec{x}, \vec{x}, t) = K - V = \frac{1}{2}m\hat{x}^2 - V(\vec{x}, t)$$

Principle of least action or Mamiltonian principle

The motion of the perhicle from
$$2\overline{c}$$
, to $2\overline{c}$,
is along a curve $\overline{x}(t)$ such that $\overline{x}(t_0) = 2\overline{c}_0$, $\overline{x}(t_0) = 2\overline{c}_0$
that is an extremal of the action \overline{I} .

$$I = \int_{a}^{b} f(\bar{\mathcal{P}}, \bar{\mathcal{F}}, t) dt = \int_{b}^{b} K(t) - V(t) dt$$

The trajectory is an extremal of I it and only it

$$\frac{d}{dt}\left(\frac{\partial f}{\partial \dot{x}}\right) - \frac{\partial f}{\partial \vec{x}} = 0$$

With cathesian coordinates, we get:

$$m\vec{x} = -\vec{\nabla} V(\vec{x})$$

wh	ich is	nothing	else	than
the	Secar	New	ron	au.

However: \mathcal{L} can be a tuchan of arbitrary coordinates $\left(\vec{q}, \vec{q}\right)$ "generalized" coordinates $\mathcal{L}\left(\vec{q}, \vec{q}\right)$. $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \vec{q}}\right) - \frac{\partial \mathcal{L}}{\partial \vec{q}} = 0$ Lagrange's equations

We can easily write equations of motions in any coord. system.

Hamiltonian mechanics

Note: Lagrangian mechanics generate 2nd order differential equations mão = - PV(x)

It is always possible to split a 2nd order differential equation into two first order differential equations.

This is what is done in Hamiltonian mechanics

Definition

2

$$\vec{p} := \frac{\partial \mathcal{L}}{\partial \vec{q}}$$

Note: inverting
$$\vec{p} = \vec{p}(\vec{q}, \vec{q})$$
, it is possible to
write $\vec{q} = \vec{q}(\vec{p}, \vec{q})$

Hamiltonian The scalar function

Hamilton equations
(compute the total derivative of
$$H(\vec{q}, \vec{p}, t) = \vec{p} \cdot \vec{q} - \hat{L}(\vec{q}, \vec{q}, t)$$

(a) right hand side (diff. with respect of \vec{q}, \vec{p})
 $\frac{\partial H}{\partial \vec{q}} + \frac{\partial H}{\partial \vec{p}} + \frac{\partial H}{\partial t} dt$
(c) left hand side (diff. with respect of $\vec{p} \cdot \vec{q} \cdot \vec{q}$)
 $\vec{p} \cdot d\vec{q} + \vec{q} \cdot d\vec{p} - \frac{\partial L}{\partial \vec{q}} d\vec{q} - \frac{\partial L}{\partial \vec{q}} d\vec{q}$
 $= \frac{\partial L}{\partial \vec{q}} d\vec{q} + \vec{q} \cdot d\vec{p} - \frac{\partial L}{\partial \vec{q}} d\vec{q} - \frac{\partial L}{\partial \vec{q}} dt$
 $= \frac{\partial L}{\partial \vec{q}} d\vec{q} + \vec{q} \cdot d\vec{p} - \frac{\partial L}{\partial \vec{q}} d\vec{q} - \frac{\partial L}{\partial \vec{q}} dt$
 $= \vec{q} \cdot d\vec{p} - \frac{\partial L}{\partial \vec{q}} d\vec{q} - \frac{\partial L}{\partial \vec{q}} d\vec{q} - \frac{\partial L}{\partial \vec{q}} dt$
 $Equality$ (2) and (2)
 $\vec{q} = \frac{\partial H}{\partial \vec{p}} - \frac{\partial L}{\partial \vec{q}} - \frac{\partial L}{\partial \vec{q}} = \frac{\partial H}{\partial \vec{p}} - \frac{\partial L}{\partial \vec{q}} dt$

$$\vec{q} = \frac{\partial H}{\partial \vec{p}} - \frac{\partial \hat{k}}{\partial \vec{q}} = \frac{\partial H}{\partial \vec{p}} \qquad \frac{\partial \hat{k}}{\partial t} = \frac{\partial H}{\partial t}$$
Using Euler-Lagrange
$$\vec{d}_{t} \left(\frac{\partial \hat{k}}{\partial \vec{q}}\right) - \frac{\partial \hat{k}}{\partial \vec{q}} = 0$$

$$\vec{p}_{t} = \frac{\partial H}{\partial \vec{q}} \qquad = \frac{\partial H}{\partial \vec{q}} = -\frac{\partial H}{\partial \vec{q}}$$

In conclusion, we have transformed a set of 2nd order differenhal equations into 2x more 1st order differenhal equations:

$$\vec{q} = \frac{\partial H}{\partial \vec{p}} \qquad \frac{\partial g}{\partial t} = \frac{\partial H}{\partial t}$$

$$\vec{p} = -\frac{\partial H}{\partial \vec{q}} \qquad \text{Hamilton's equations}$$

Hamiltonian conservation

=)

Lets compute the time derivative of $H(\tilde{q}, \tilde{p}, t)$ $\frac{d}{dt} H(\tilde{q}, \tilde{p}, t) = \frac{\partial H}{\partial \tilde{q}} \frac{d\tilde{q}}{dt} + \frac{\partial H}{\partial \tilde{p}} \frac{d\tilde{p}}{dt} + \frac{\partial H}{\partial t}$ $- \tilde{p} \cdot \tilde{q} + \tilde{q} \tilde{p} = 0$ $T(Q, indication derivative derivative of H(\tilde{q}, \tilde{p}, t)$

It
$$\mathcal{L}$$
 is time independent, i.e. $\mathcal{L} = \mathcal{L}(q, q)$
(= $V(q)$ is time independent)

By construction,
$$H(\vec{q},\vec{p})$$
 is conserved along a trajectory

Definitions	for an n-dime	mbional system		
Configuration space	(91 ·- 9n)	n-dimensions		
Momentum space	(p p.)	n-dimensions		
Phase space	(q. q., p. p.) (w, w _{2n})	2n-dimensions		
Note As Hamilton's equations are 1st order differential equations, a trajectory is uniquely defined by a point in the phase space				

Time evolution operator Time evolution operator It is the possible to define a time evolution operator H_t that will bring $(\overline{g}_0, \overline{p}_0)$ to $(\overline{g}_1(t), \overline{p}_1(t))$ $(\overline{g}_1(t), \overline{p}_1(t)) = H_t(\overline{g}_0, \overline{p}_0)$ H_t will map any 2D surface So in the phase space to an other 2D surface St in the phase space.

Poincare invariant theorem

$$\iint_{S_0} d\hat{q} \cdot d\hat{p} = \iint_{S_0} d\hat{q} \cdot d\hat{p}$$

Poisson brackets two operators
$$A, B$$

$$\begin{bmatrix} A, B \end{bmatrix} := \frac{\partial A}{\partial \tilde{q}} \frac{\partial B}{\partial \tilde{p}} - \frac{\partial A}{\partial \tilde{p}} \frac{\partial B}{\partial \tilde{q}} = \sum_{i=1}^{n} \frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}} - \frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}$$
Mamilton's equations

$$\dot{w}_{\lambda} = \left[w_{\lambda}, H \right] = \frac{\partial w_{\lambda}}{\partial \vec{q}} \frac{\partial H}{\partial \vec{q}} - \frac{\partial w_{\lambda}}{\partial \vec{q}} \frac{\partial H}{\partial \vec{q}}$$

$$= \begin{pmatrix} q_{2} = \frac{\partial H}{\partial p_{2}} \\ p_{2} = -\frac{\partial H}{\partial q_{2}} \end{pmatrix}$$

Orbits in Spherical Systems

Orbits in spherical potentials x= rer = r Spherical coordinates $\phi(\bar{x}) = \phi(r)$ $r = \sqrt{2c^2 + y^2 + z^2}$ Equation of motion (Newton law) $\frac{\partial^{2}}{\partial t^{2}}(\tilde{\infty}) = \tilde{g}(\tilde{\infty})$

$$g(\tilde{z}) = -\nabla \phi(\tilde{z}) = -\frac{\partial}{\partial r} \phi(r) e_r - \frac{1}{r} \frac{\partial}{\partial \phi} \phi(r) e_{\tilde{e}} - \frac{1}{r} \frac{\partial}{\partial \phi} \phi(r) e_{\phi}$$
$$= g(r) \bar{e}_r$$
will $g(r) = -\frac{\partial}{\partial r} \phi(r)$

Angular momenhum conservation

$$\vec{L} = \vec{x} \times \frac{d\vec{x}}{dt} \qquad (\text{specific angular momenhum}) \qquad \vec{y}_{1})\vec{e_{r}}\vec{t}$$

$$\frac{d}{dt}(\vec{L}) = \frac{d\vec{x}}{dt} \times \frac{d\vec{x}}{dt} + \vec{x} \times \frac{d^{2}\vec{x}}{dt^{2}} \qquad \mathbf{o}$$

$$= \mathbf{o} \qquad + \vec{x}\vec{e_{r}} \times g(r)\vec{e_{r}} = \mathbf{o}$$

$$= \mathbf{o} \qquad (=\vec{N}, \text{the tork})$$

In a spherical system, the augular momentum
of a particle is conserved !
$$L = cte$$

(A spherical potential induces no tork $\tilde{N} = \tilde{\mathcal{X}} \times \tilde{F} = 0$)

$$\frac{\text{Hamiltonian}/\text{Energy}}{\hat{q}} = \begin{cases} r \\ \varphi \\ \varphi \\ \end{cases} = \begin{cases} r \\ \varphi \\ \varphi \\ \end{cases} = \begin{cases} \frac{r}{\varphi} \\ \frac{\vartheta p}{\partial \varphi} \\$$

Radiat orbits	$\dot{\varphi} = 0 = 0$	L = 0
Equation of mo	han: r=	$-\frac{\partial\phi}{\partial r}$
Energy	: E =	$\frac{1}{2}\dot{r}^2 + \phi(r)$
3 cases		$\phi(r)_{A}$
④ E> \$\$\$(00) =>	VE, r2> 0 orbit not bounded	,
② E < \$\$(\$\$) =>	impossible	E3
$ (3) \phi(o) < E < \phi($	(00)	Ymay E2
Jrlqr=0	i.e $E = \phi(r)$	
	r = rmox	

Non radial or bit	s v t o	¢≠∘	L ≠ 0	
$EOM \begin{cases} \ddot{r} - r\dot{\phi} \\ \frac{\partial}{\partial t} (r^{2}\dot{\phi}) \\ \frac{\partial}{\partial t} \end{cases}$	$\frac{1}{2} + \frac{\partial \phi}{\partial r} = 0$ = 0	A		
replace t by p	d dt	$\frac{d}{d\rho}\dot{\phi} =$	$\frac{L}{r^2} \frac{d}{d\varphi}$	
	$\frac{\partial}{\partial \varphi} \left(\frac{1}{r^2} \frac{\partial r}{\partial \varphi} \right) =$	$\frac{L^2}{r^3} =$	- Jø dr	
use $u = \frac{1}{r}$	$\frac{d^2u}{dy^2} + u =$	1 d L ² u ² d	$\frac{\phi}{r}(\frac{1}{n})$	
		No analy	itical gene	ral solution

Radial energy equation

From the energy
$$E = \frac{1}{2}(r^2 + (r\phi)^2) + \phi(r)$$

1) multiply by $\frac{2}{L^2}$
2) use $u = \frac{1}{r}$ and $\frac{d}{dt} = \frac{1}{r^2}\frac{d}{dp}$

we get
$$\left(\frac{du}{d\psi}\right)^2 \pm u^2 \pm \frac{2\phi(\frac{d}{u})}{L^2} = \frac{2E}{L^2}$$

we have one or two solutions

Notes

• if $u_n = u_2$: periodic orbit • if $u_n \cong u_2$: orbit with a small eccentricity • if $u_n \gg u_2$: orbit eccentricity is nearly 1

40

 \mathcal{R}

40

Radial period

Time to travel from the apocenter to the pericenter $T_r = 2 \int_{at}^{b_2} dt = 2 \int_{at}^{c_2} \frac{dt}{dr} dr \qquad \begin{cases} r(t_n) = r_n \\ r(t_2) = r_2 \end{cases}$ $E = \frac{1}{2} \left(\dot{r}^{2} + (r \dot{\phi})^{2} \right) + \phi(r) = \frac{1}{2} \dot{r}^{2} + \frac{L}{2r^{2}} + \phi(r)$ $\dot{r}^2 = 2(E - \phi(r)) - \frac{L^2}{2}$ $\frac{dr}{dt} = \sqrt{2(E-\phi(r))} - \frac{L^2}{r^2}$ $T_r = 2 \int \frac{dr}{\sqrt{2(E-\phi(r)) - \frac{L^2}{r^2}}}$ $= \frac{1}{\sqrt{2(E-\phi(r)) - \frac{L^2}{L^2}}}$

$$\Delta \varphi : \text{ increase of the azimuthal angle during } T_r$$

$$\Delta \varphi = 2 \int_{\gamma_n}^{\gamma_n} d\varphi = 2 \int_{\gamma_n}^{\xi_n} \frac{d\varphi}{dt} dt = 2 \int_{\gamma_n}^{\gamma_n} \frac{d\varphi}{dt} dr$$

$$= 2 \int_{\gamma_n}^{\gamma_n} \frac{d\varphi}{\sqrt{2(\varepsilon - \phi(r_1)) - \frac{\xi^2}{\gamma_n^2}}} dr$$

Azimuthal period : time to increase q by 25

As in general
$$\frac{2\pi}{|O\varphi|}$$
 is not a rational number
the orbit is not guarantee to be closed

Stellar orbits

Spherical Systems

Examples

(1) Kepler potential (potenhial of a mass point)

$$\begin{cases}
\varphi(r) = -\frac{GH}{r} \\
\frac{\partial 4}{\partial r}(r) = \frac{GH}{r^2} = -GHu^2
\end{cases}$$

$$\frac{d^2 u}{d q^2} + u = \frac{1}{L^2 u^2} \frac{\partial \phi}{\partial r} \left(\frac{1}{u}\right) = D \qquad \frac{d^2 u}{d \varphi^2} + u = \frac{GM}{L^2}$$

General solution

$$u(\varphi) = C \cos(\varphi - \varphi_{0}) + \frac{GN}{L^{2}}$$

free parometer free parometer

$$u(\varphi) = \frac{1}{2} \cos(\varphi - \varphi_{0}) + \frac{GN}{L^{2}}$$
period = 257

$$\frac{GN}{L^{2}} \int_{0}^{1} \frac{1}{T} \frac{1}{2T} \varphi$$

In term of r

$$r(q) = \frac{1}{C \cos(\varphi \cdot \varphi_{\circ}) + \frac{GH}{L^{2}}}$$

$$r(\varphi) = \frac{\alpha(1-e^2)}{1+e \cos(\varphi-\varphi_0)}$$

a (me)

Cases

bound orbit (ellipse) a(1+e) e<1

pericenter / a pocenter

$$r_{min} = \frac{a(n-e^{2})}{n+e} = a(n-e)$$

$$r_{max} = \frac{a(n-e^{2})}{n-e} = a(n+e)$$

P

(circular orbit) rmin = rmax = a e = 0

Periods

$$\int_{r_{r}}^{r_{2}} \overline{T_{r}} = 2 \int_{r_{n}}^{r_{2}} \frac{dr}{\sqrt{2(E - \phi(r)) - \frac{L^{2}}{r_{2}}}} = 2\pi \sqrt{\frac{\alpha^{3}}{GH}}$$

$$= 2\pi \sqrt{\frac{\alpha^{3}}{GH}}$$

$$T_{r} = \overline{T_{\phi}}$$

Keplerian orbits (point mass)

Keplerian orbits (point mass)

Keplerian orbits (point mass)

(2) Homogeneous sphere
$$\int_{0}^{\infty} R_{0}$$
 (Harmonic oscillations)
 $\phi(r) = -2\pi G \int_{0}^{\infty} R_{0}^{2} + \frac{2}{3}\pi G \int_{0}^{\infty} r^{2}$
 $cte = -0$
 $\phi(r) = \frac{1}{2} R^{2} r^{2}$ with $R = \sqrt{\frac{4}{3}\pi G \int_{0}^{\infty}}$
Equations of motion (in carthesian coordinates)
 $L(x, y, \dot{x}, \dot{y}) = \frac{1}{2}\dot{x}^{2} + \frac{1}{2}\dot{y}^{2} - \frac{1}{2}R^{2}(x^{2}+y^{2})$
 $\begin{cases} \ddot{x} = -R^{2}x \qquad \int x(t) = X\cos(Rt + \epsilon_{t}) \\ \ddot{y} = -R^{2}y \qquad \int y(t) = Y\cos(Rt + \epsilon_{t}) \end{cases}$
 $X, Y, \epsilon_{x}, \epsilon_{y}$ constants fixed by the initial conditions

$$T_{\varphi} = \frac{2\pi}{\Omega} \qquad T_{\varphi} = \frac{1}{2}T_{\varphi} = \frac{\pi}{\Omega}$$

Homegeneous sphere (harmonic)

Homegeneous sphere (harmonic)

Homegeneous sphere (harmonic)

Isochrone potential	Good galazey model that leads to
· · · · · · · · · · · · · · · · · · ·	analytical orbits
$\phi(r) = - \frac{GM}{5 + \sqrt{5^2 + r^2}}$	
New variable $S = -\frac{GH}{5\phi(r)}$	= 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5
Menan 1953	solution of $5^2 - 25 - \frac{r^2}{5^2} = 0$
	$= 2 + \frac{r^{2}}{5^{2}} = 5^{2} \left(n - \frac{2}{5} \right)$
We can write	τ.
ds = ds dr dt = dr dt	$S(L) = \int \frac{dS}{dr} \frac{dr}{dt} dt$ F_0 I_0
$\frac{ds}{dt} = \frac{ds}{dt} \frac{dt}{dt} = \left(-\frac{1}{5^2}\right)^{-\frac{1}{2}}$	$\frac{r}{5^2} \sqrt{2(\epsilon \cdot \phi) - \frac{L^2}{r^2}}$

Radial and azimuthal periods

$$T_{r} = 2 \int_{r_{n}}^{v_{2}} \frac{dv}{\sqrt{2(\varepsilon - \phi) - \frac{L^{2}}{v^{2}}}} \quad \text{and} \quad \Delta \varphi = 2 \int_{r_{n}}^{v_{2}} \frac{dv}{r^{2}\sqrt{2(\varepsilon - \phi) - \frac{L^{2}}{v^{2}}}}$$

$$as \quad \frac{dr}{dt} = \sqrt{2(\varepsilon - \phi) - \frac{L^{2}}{r^{2}}} \quad \frac{2(\varepsilon - \phi) - \frac{L^{2}}{r^{2}}}{(r - v_{n})(r - v_{n})} = 0 \quad \text{solutions} \quad r_{n} r_{2}$$

We can re-write

$$\int 2(E - \varphi) - \frac{L^2}{r^2}$$
in term of S
$$T_r = \frac{2L}{\sqrt{-2E}} \int_{S_r}^{S_2} ds \frac{S - 2}{\sqrt{(S_r - S)(S - S_r)}}$$

L'AMAS ISOCHRONE

II. - Calcul des orbites

par M. HÉNON (Institut d'Astrophysique, Paris)

- SOMMAIRE. On obtient les expressions explicites des orbites stellaires dans un amas isochrone (modèle d'amas globulaire) On calcule la période, l'angle entre apocentres successifs, la densité moyenne le long d'une orbite. Six orbites particulières sont dessinées.
- ABSTRACT. One obtains the explicit expressions of the stellar orbits in an isochron cluster (model of a globular cluster). One computes the period, the angle between two successive apocenters, the mean density along an orbit. Six particular orbits are drawned down.
- *Резюме.* Автор получает подробные выражения звездных орбит в изохронном скоплении (модель шарового скопления). Вычислен период, угол между последовательными апоцентрами и средняя плотность вдоль орбиты. Даны чертежи шести частных случаев орбит.

L'intégration se fait sans difficultés particulières et mène à :

(5)
$$t - t_0 = -\frac{\sqrt{-A^2 + 2} U^2 + (2E + 2A^2) U - A^2}{(2 - 2E) (1 - U)} + \frac{1}{(2 - 2E)^{3/2}} \operatorname{Arc\,sin} \frac{(2 - E) U - E}{\sqrt{E^2 + 2EA^2 - 2A^2} (1 - U)}.$$

Cette relation entre U et t, donc entre r et t, définit le mouvement radial de l'étoile.

galpy

Welcome	to galpy's document 🗙	÷			
$\overleftarrow{\leftarrow} \rightarrow \mathbf{c}$	÷ ۵	(i) A https://galpy.readthedocs.io/en/v1.5.0/	[… ⊘ ☆	III\ 🗊	=
24 Google Ca	alendar 🛛 🔄 Google Traduct	on 🔞 SAO/NASA ADS Cu 🎆 general SWIFT SI 🏋 FrontPage - Astro			
	galpy v1.5 documer	tation »		next L index	

Welcome to galpy's documentation ¶

galpy is a Python 2 and 3 package for galactic dynamics. It supports orbit integration in a variety of potentials, evaluating and sampling various distribution functions, and the calculation of action-angle coordinates for all static potentials. galpy is an <u>astropy affiliated package</u> and provides full support for astropy's <u>Quantity</u> framework for variables with units.

galpy is developed on GitHub. If you are looking to <u>report an issue</u> or for information on how to <u>contribute to the</u> <u>code</u>, please head over to <u>galpy's GitHub page</u> for more information.

As a preview of the kinds of things you can do with galpy, here's an <u>animation</u> of the orbit of the Sun in galpy's MWPotential2014 potential over 7 Gyr:

The End