Astrophysics I1I, Dr. Yves Revaz EPFL

4th year physics Exercises week 5
20.10.2021 Autumn semester 2021

Astrophysics III: Stellar and galactic dynamics

Solutions

Problem 1:
From Poisson’s equation in spherical coordinates we get:
V2® = 47Gp
V2® written in spherical coordinates, and considering a spherical potential we get:
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a lot of straight-forward algebra follows, but finally we get
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The circular velocity also follows simply:
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Problem 2:

We consider a wire aligned with the z axis. As the mass distribution is discontinu-
ous, we cannot rely on the Poisson equation to derive the corresponding potential. We
instead rely on the Gauss Theorem :

/ V& - dS = 4nG M, (1)
S

where S is any surface and Mg is the mass enclosed by the surface S. Lets define S to
be the surface of a cylinder of length Az and radius R, with its symmetry axis being
the axis z, i.e., the wire. The surface ds parallel to the axis z is :

ds =21R - Ax, (2)
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and the enclosed mass is :

MS = )\0 - Ax. (3)
By symmetry (the linear density of the wire is constant) :
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where € is perpendicular to the axis . With (2), (3) and (4), the Gauss theorem
becomes :

/%-dgz sz-Axiqs(R) = 47G N\ - A, (5)
g OR
which leads to : 5 )
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~B(R) =207, (6
and after integrating over the radius R :
O(R) =2G N\ In(R) + C, (7)

where C' is a constant.

Problem 3:

As per problem 1, the isochrone p is straightforward to derive, taking the form:
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3(b+ a)a® — r*(b+ 3a) with a= VT2
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The circular velocity is
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Problem 4:

Starting from Poisson’s equation and applying Gauss’ theorem, we have:
4t GM = 47TG/d3Xp = /d3XV2<I> = /dZS Vo

Let’s define a unit surface on the disk, corresponding to a mass >, which is then the
surface density. Defining a slab enclosing the unit surface and making its thickness
tend to a vanishing value (¢ — 0, see Fig. 1), the surface integral reduces to twice the
gradient of the potential:

4T GY = /dQS Vb = o I®x
0z
We have
0% 0 2 2]-1/2
5 = a[—GM[R + (a+ |2])?] ]
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Figure 1: The Kuzmin disk with the unit surface (left) and seen edge-on (right), with
the 2¢ thick slab, on the surface of which the integration is made.

With |z| — 0, we then have:

Problem 5:
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The velocity curve may be obtained from the formula:
R d 00 R/Z(R/)
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Replacing X (R') using the Mestel’s surface density we get:
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The derivative with respect to a of this latter result writes:
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which, in the limit R,., — oo gives:

This leads to the circular velocity:

v2(R) =

0

R2 — g2
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