Astrophysics III: Stellar and galactic dynamics Solutions

Problem 1:

From Poisson's equation in spherical coordinates we get:

$$
\nabla^{2} \Phi=4 \pi G \rho
$$

$\nabla^{2} \Phi$ written in spherical coordinates, and considering a spherical potential we get:

$$
\nabla^{2} \Phi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Phi}{\partial r}\right)
$$

a lot of straight-forward algebra follows, but finally we get

$$
\rho=\frac{v_{s}^{2}}{4 \pi G r_{s}^{2}} \frac{1}{\left(r / r_{s}\right)\left(1+r / r_{s}\right)^{2}}
$$

The circular velocity also follows simply:

$$
\begin{aligned}
v_{c}^{2} & =r \frac{\partial \Phi}{\partial r}=r v_{s}^{2}\left[-\frac{1}{\frac{r}{r_{s}}\left(1+\frac{r}{r_{s}}\right)}+\frac{\ln \left(1+\frac{r}{r_{s}}\right)}{r_{s}\left(\frac{r}{r_{s}}\right)^{2}}\right]=v_{s}^{2}\left[\frac{\ln \left(1+\frac{r}{r_{s}}\right)}{\frac{r}{r_{s}}}-\frac{1}{\left(1+\frac{r}{r_{s}}\right)}\right] \\
& =v_{s}^{2}\left[\frac{\left(1+\frac{r}{r_{s}}\right) \ln \left(1+\frac{r}{r_{s}}\right)-\frac{r}{r_{s}}}{\frac{r}{r_{s}}\left(1+\frac{r}{r_{s}}\right)}\right]=v_{s}^{2} \frac{\left(r_{s}+r\right) r_{s} \ln \left(1+\frac{r}{r_{s}}\right)-r r_{s}}{r\left(r_{s}+r\right)}
\end{aligned}
$$

Problem 2:

We consider a wire aligned with the x axis. As the mass distribution is discontinuous, we cannot rely on the Poisson equation to derive the corresponding potential. We instead rely on the Gauss Theorem :

$$
\begin{equation*}
\int_{S} \vec{\nabla} \Phi \cdot d \vec{S}=4 \pi G M_{S}, \tag{1}
\end{equation*}
$$

where S is any surface and M_{S} is the mass enclosed by the surface S. Lets define S to be the surface of a cylinder of length Δx and radius R, with its symmetry axis being the axis x, i.e., the wire. The surface $d s$ parallel to the axis x is :

$$
\begin{equation*}
d s=2 \pi R \cdot \Delta x \tag{2}
\end{equation*}
$$

and the enclosed mass is :

$$
\begin{equation*}
M_{S}=\lambda_{0} \cdot \Delta x \tag{3}
\end{equation*}
$$

By symmetry (the linear density of the wire is constant) :

$$
\begin{equation*}
\vec{\nabla} \Phi=\frac{\partial}{\partial R} \Phi(R) \cdot \vec{e}_{R} \tag{4}
\end{equation*}
$$

where \vec{e}_{R} is perpendicular to the axis x. With (2), (3) and (4), the Gauss theorem becomes:

$$
\begin{equation*}
\int_{S} \vec{\nabla} \Phi \cdot d \vec{S}=2 \pi R \cdot \Delta x \frac{\partial}{\partial R} \Phi(R)=4 \pi G \lambda_{0} \cdot \Delta x \tag{5}
\end{equation*}
$$

which leads to :

$$
\begin{equation*}
\frac{\partial}{\partial R} \Phi(R)=2 G \frac{\lambda_{0}}{R} \tag{6}
\end{equation*}
$$

and after integrating over the radius R :

$$
\begin{equation*}
\Phi(R)=2 G \lambda_{0} \ln (R)+C \tag{7}
\end{equation*}
$$

where C is a constant.

Problem 3:

As per problem 1, the isochrone ρ is straightforward to derive, taking the form:

$$
\rho=M\left[\frac{3(b+a) a^{2}-r^{2}(b+3 a)}{4 \pi(b+a)^{3} a^{3}}\right] \quad \text { with } \quad a \equiv \sqrt{b^{2}+r^{2}}
$$

The circular velocity is

$$
v_{c}^{2}=\frac{G M r^{2}}{(b+a)^{2} a}
$$

Problem 4:

Starting from Poisson's equation and applying Gauss' theorem, we have:

$$
4 \pi G M=4 \pi G \int \mathrm{~d}^{3} \mathbf{x} \rho=\int \mathrm{d}^{3} \mathbf{x} \nabla^{2} \Phi=\int \mathrm{d}^{2} \mathbf{S} \nabla \Phi
$$

Let's define a unit surface on the disk, corresponding to a mass Σ, which is then the surface density. Defining a slab enclosing the unit surface and making its thickness tend to a vanishing value $(\varepsilon \rightarrow 0$, see Fig. 1), the surface integral reduces to twice the gradient of the potential:

$$
4 \pi G \Sigma=\int \mathrm{d}^{2} \mathbf{S} \nabla \Phi_{\mathrm{K}}=2 \frac{\partial \Phi_{\mathrm{K}}}{\partial z}
$$

We have

$$
\begin{aligned}
\frac{\partial \Phi_{\mathrm{K}}}{\partial z} & =\frac{\partial}{\partial z}\left[-G M\left[R^{2}+(a+|z|)^{2}\right]^{-1 / 2}\right] \\
& =G M\left[R^{2}+(a+|z|)^{2}\right]^{-3 / 2}(a+|z|)
\end{aligned}
$$

Figure 1: The Kuzmin disk with the unit surface (left) and seen edge-on (right), with the 2ε thick slab, on the surface of which the integration is made.

With $|z| \rightarrow 0$, we then have:

$$
\begin{aligned}
4 \pi G \Sigma_{\mathrm{K}} & =2 \frac{\partial \Phi_{\mathrm{K}}}{\partial z}=2 a G M\left[R^{2}+a^{2}\right]^{-3 / 2} \\
\Rightarrow \Sigma_{\mathrm{K}} & =\frac{a M}{2 \pi\left(R^{2}+a^{2}\right)^{3 / 2}}
\end{aligned}
$$

Problem 5:

The velocity curve may be obtained from the formula:

$$
\begin{equation*}
v_{\mathrm{c}}^{2}(R)=-4 G \int_{0}^{R} \mathrm{~d} a \frac{a}{\sqrt{R^{2}-a^{2}}} \frac{\mathrm{~d}}{\mathrm{~d} a} \int_{a}^{\infty} \mathrm{d} R^{\prime} \frac{R^{\prime} \Sigma\left(R^{\prime}\right)}{\sqrt{R^{\prime 2}-a^{2}}} \tag{8}
\end{equation*}
$$

Replacing $\Sigma\left(R^{\prime}\right)$ using the Mestel's surface density we get:

$$
\begin{align*}
\int_{a}^{\infty} \mathrm{d} R^{\prime} \frac{R^{\prime} \Sigma\left(R^{\prime}\right)}{\sqrt{R^{\prime 2}-a^{2}}} & =\frac{v_{0}^{2}}{2 \pi G} \int_{a}^{\infty} \mathrm{d} R^{\prime} \frac{1}{\sqrt{R^{\prime 2}-a^{2}}} \\
& =\frac{v_{0}^{2}}{2 \pi G} \int_{a}^{R_{\max }} \mathrm{d} R^{\prime} \frac{1}{\sqrt{\left(R^{\prime} / a\right)^{2}-1}} \frac{1}{a} \\
& =\frac{v_{0}^{2}}{2 \pi G} \int_{a}^{R_{\max }} \mathrm{d} R^{\prime} \frac{\mathrm{d}}{\mathrm{~d} R}(\operatorname{arccosh}(R / a)) \\
& =\frac{v_{0}^{2}}{2 \pi G}\left[\operatorname{arccosh}\left(R_{\max } / a\right)-\operatorname{arccosh}(1)\right] \\
& =\frac{v_{0}^{2}}{2 \pi G} \operatorname{arccosh}\left(R_{\max } / a\right) \tag{9}
\end{align*}
$$

The derivative with respect to a of this latter result writes:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} a}\left(\frac{v_{0}^{2}}{2 \pi G} \operatorname{arccosh}\left(R_{\max } / a\right)\right) & =\frac{v_{0}^{2}}{2 \pi G} \frac{\mathrm{~d}}{\mathrm{~d} a} \operatorname{arccosh}\left(R_{\max } / a\right) \\
& =-\frac{v_{0}^{2}}{2 \pi G} \frac{R_{\max }}{\sqrt{R_{\max }^{2}-a^{2}}} \frac{1}{a} \tag{10}
\end{align*}
$$

which, in the limit $R_{\max } \rightarrow \infty$ gives:

$$
\begin{equation*}
-\frac{v_{0}^{2}}{2 \pi G a} \tag{11}
\end{equation*}
$$

This leads to the circular velocity:

$$
\begin{align*}
v_{\mathrm{c}}^{2}(R) & =\frac{2 v_{0}^{2}}{\pi} \int_{0}^{R} \mathrm{~d} a \frac{1}{\sqrt{R^{2}-a^{2}}} \\
& =v_{0}^{2} \tag{12}
\end{align*}
$$

