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Solutions

Problem 1:

From Poisson’s equation in spherical coordinates we get:

∇2Φ = 4πGρ

∇2Φ written in spherical coordinates, and considering a spherical potential we get:
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a lot of straight-forward algebra follows, but finally we get
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The circular velocity also follows simply:
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Problem 2:

We consider a wire aligned with the x axis. As the mass distribution is discontinu-
ous, we cannot rely on the Poisson equation to derive the corresponding potential. We
instead rely on the Gauss Theorem :∫

S

~∇Φ · d~S = 4πGMS, (1)

where S is any surface and MS is the mass enclosed by the surface S. Lets define S to
be the surface of a cylinder of length ∆x and radius R, with its symmetry axis being
the axis x, i.e., the wire. The surface ds parallel to the axis x is :

ds = 2πR ·∆x, (2)
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and the enclosed mass is :
MS = λ0 ·∆x. (3)

By symmetry (the linear density of the wire is constant) :

~∇Φ =
∂

∂R
Φ(R) · ~eR, (4)

where ~eR is perpendicular to the axis x. With (2), (3) and (4), the Gauss theorem
becomes : ∫

S

~∇Φ · d~S = 2πR ·∆x ∂

∂R
Φ(R) = 4πGλ0 ·∆x, (5)

which leads to :
∂

∂R
Φ(R) = 2G

λ0
R
, (6)

and after integrating over the radius R :

Φ(R) = 2Gλ0 ln(R) + C, (7)

where C is a constant.

Problem 3:
As per problem 1, the isochrone ρ is straightforward to derive, taking the form:

ρ = M

[
3(b+ a)a2 − r2(b+ 3a)

4π(b+ a)3a3

]
with a ≡

√
b2 + r2

The circular velocity is

v2c =
GMr2

(b+ a)2a

Problem 4:
Starting from Poisson’s equation and applying Gauss’ theorem, we have:

4π GM = 4πG

∫
d3x ρ =

∫
d3x∇2Φ =

∫
d2S∇Φ

Let’s define a unit surface on the disk, corresponding to a mass Σ, which is then the
surface density. Defining a slab enclosing the unit surface and making its thickness
tend to a vanishing value (ε→ 0, see Fig. 1), the surface integral reduces to twice the
gradient of the potential:

4π GΣ =

∫
d2S∇ΦK = 2

∂ΦK

∂z

We have
∂ΦK
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=

∂
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[
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]−1/2]
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[
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]−3/2
(a+ |z|)
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Figure 1: The Kuzmin disk with the unit surface (left) and seen edge-on (right), with
the 2ε thick slab, on the surface of which the integration is made.

With |z| → 0, we then have:

4π GΣK = 2
∂ΦK

∂z
= 2aGM

[
R2 + a2

]−3/2
⇒ ΣK =

aM

2π (R2 + a2)3/2

Problem 5:
The velocity curve may be obtained from the formula:

v2c (R) = −4G

∫ R
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∫ ∞
a
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(8)

Replacing Σ(R′) using the Mestel’s surface density we get:∫ ∞
a
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The derivative with respect to a of this latter result writes:
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(10)
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which, in the limit Rmax →∞ gives:

− v20
2πGa

(11)

This leads to the circular velocity:

v2c (R) =
2v20
π

∫ R

0

da
1√

R2 − a2
= v20

(12)
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