
On Microkernel Construction
Lei Yan

(Slides adopted from Marios Kogias)

μ-kernels

What is a μ-kernel and what are the advantages of the μ-kernel design?

•Enforced modularity

• Fault isolation

On μ-Kernel Construction

•Main Ideas
• Minimality Principle

• Address Spaces

• Threads & IPC

• Unique Identifiers

• Misconceptions:
• Performance

Principles

• Independence
A programmer must be able to implement an arbitrary subsystem S in such a
way that it cannot be disturbed or corrupted by other subsystems S’

• Integrity
There must be a way for S

1
to address S

2
 and establish a communication

channel which can neither be corrupted or eavesdropped by S’

How does a μ-kernel guarantee integrity and authentication for the
IPC?

What is the underlying assumption in the paper in order to
guarantee the two principles?

Check Reflections on Trusting Trust

https://dl.acm.org/citation.cfm?id=358210

Is the microkernel design in the paper free of performance
overhead compared to monolithic kernel with today’s
hardware?

- IPC vs. Procedure call:

- Min. 2x syscall vs. 1x function call (100 vs. 10 cycles)

- Function calls can even have 0 overhead (e.g., inlining by
smart compiler)

Enforced modularity is not free (given today’s hardware)

- There are designs with much less performance overhead but
comes with other trade-offs

- E.g., eBPF is kind of turning Linux into a microkernel (see
the discussion on duality paper for details)

Compare the μ-kernel with the exokernel design

“The presented design shows that it is possible to achieve well performing μ-kernels
through processor-specific implementations of processor-independent abstractions.”

BACKUP

Microkernel is not inherently slow
• IPC

L3 IPC is 23x faster than Mach on 486 (250 vs. 5750 cycles)

•Mode-switch
Theoretcically fast (107 cycles on 486), Mach is just not well-optimized (900
cycles on 486).

•Address-space switch
Can be fast (< 50 cycles on e.g., 486) with hardware support (e.g., tagged-TLB)
and various kernel implementation tricks (e.g., emulating tagged-TLB with
segmentation).

•Micro-kernel architecture does not inherently lead to memory system
degradation (increasing cache capacity miss)

Enforcing Modularity

Rishabh Iyer
21. 10. 2021

Paper Recap

o Two rough models of OS designs
v Message-oriented vs Procedure-oriented

o Two models are duals

o Dual programs:
v Are logically identical

v Can be implemented to have similar performance

2

Underlying hardware (not app) should determine design

Shared Memory vs Message Passing

o Decades-old debate on the right IPC mechanism
v Have also been proven to be duals

o Shared memory:
vWrites to local memory/registers are globally visible

v Communication is implicit

o Message passing:
v Communication must be explicitly specified.

v Must communicate with a process to share data with it

3

How is this relevant to modularity?

o Message Passing enforces modularity
v All communication via explicit messages

v Modules are isolated

v Propagation of errors is reduced

o Primary disadvantage of enforced modularity?
v Performance (marshalling, unmarshalling of messages)

• 10% of CPU cycles in Google’s DC spent running protobuf operations

v Semantic coupling may render functional decoupling moot

4

Revisiting duality for modern HW

o How to build an OS that scales across NUMA nodes?

v NrOS [OSDI’21]

o How to build an OS for heterogeneous CPU cores?

v Barrelfish [SOSP’09]

o How to build an OS for disaggregated resources?

v LegoOS [OSDI’18]

5

Node-replicated (Nr) OS

o Motivation?

o Main challenges?

o Tradeoffs?

6

Barrelfish

o Motivation?

o Main challenges?

o Tradeoffs?

7

Revisiting microkernels with modern PL

o Linux kernel extensibility is important
v e.g. Docker relies on OVS, AppArmor, OverlayFS extensions

o Originally implemented using kernel modules
vWhat security/isolation guarantees do these provide?

o Modern solution?
v Extended Berkeley Packet Filter (eBPF)

8

eBPF 101

o Framework to run sandboxed programs within linux
vWhy would you want to run these programs within linux?

o How is sandboxing done? What is the provided interface?
vTradeoffs?

o Justify/argue against the below statement:
v “The Linux kernel continues its march towards becoming BPF

runtime-powered microkernel”

9

Further Reading (Optional)
o LegoOS [OSDI’18]
o Practical, safe, Linux kernel extensibility [HotOS’19]
o An Incremental Path Towards a Safer OS Kernel

[HotOS’21]

10

Backup slides

Duality

12

Designing good interfaces

oWe discussed how server interfaces are defined (IDLs)

o Design considerations for message passing systems:
v How do I name processes I want to communicate with?

vWhat is the message format?

v Semantics of asynchronous operations?

13

