On Microkernel Construction

Lei Yan
(Slides adopted from Marios Kogias)

H-kernels

What is a p-kernel and what are the advantages of the p-kernel design?

* Enforced modularity

* Fault isolation

On u-Kernel Construction

Monolithic Kernel Microkernel

* Main Id €as based Operating System based Operating System
* Minimality Principle
e Address Spaces Applicaﬁm/SystemCall

* Threads & IPC
e Unique Identifiers

* Misconceptions:
* Performance

Principles

* Independence

A programmer must be able to implement an arbitrary subsystem S in such a
way that it cannot be disturbed or corrupted by other subsystems S’

* Integrity
There must be a way for S, to address S, and establish a communication
channel which can neither be corrupted or eavesdropped by S’

How does a u-kernel guarantee integrity and authentication for the
IPC?

What is the underlying assumption in the paper in order to
guarantee the two principles?

Check Reflections on Trusting Trust

https://dl.acm.org/citation.cfm?id=358210

Is the microkernel design in the paper free of performance
overhead compared to monolithic kernel with today’s
hardware?

- IPC vs. Procedure call:
- Min. 2x syscall vs. 1x function call (100 vs. 10 cycles)

- Function calls can even have 0 overhead (e.g., inlining by
smart compiler)

Enforced modularity is not free (given today’s hardware)

- There are designs with much less performance overhead but

comes with other trade-offs
- E.g., eBPF is kind of turning Linux into a microkernel (see

the discussion on duality paper for details)

Compare the u-kernel with the exokernel design

“The presented design shows that it is possible to achieve well performing u-kernels
through processor-specific implementations of processor-independent abstractions.”

BACKUP

Microkernel is not inherently slow

* |IPC
L3 IPC is 23x faster than Mach on 486 (250 vs. 5750 cycles)

* Mode-switch

Theoretcically fast (107 cycles on 486), Mach is just not well-optimized (900
cycles on 486).

* Address-space switch

Can be fast (< 50 cycles on e.g., 486) with hardware support (e.g., tagged-TLB)
and various kernel implementation tricks (e.g., emulating tagged-TLB with
segmentation).

* Micro-kernel architecture does not inherently lead to memory system
degradation (increasing cache capacity miss)

Enforcing Modularity

Rishabh lyer
21.10.2021

Paper Recap

o Two rough models of OS designs

¢ Message-oriented vs Procedure-oriented

o Iwo models are duals

o Dual programes:
¢ Are logically identical

¢ Can be implemented to have similar performance

[Underlying hardware (not app) should determine design J

Shared Memory vs Message Passing

o Decades-old debate on the right IPC mechanism

¢ Have also been proven to be duals

o Shared memory:
¢ Writes to local memory/registers are globally visible
¢ Communication is implicit

o Message passing:
s Communication must be explicitly specified.

¢ Must communicate with a process to share data with it

How is this relevant to modularity?

o Message Passing enforces modularity
“* All communication via explicit messages
“* Modules are isolated

“* Propagation of errors is reduced

o Primary disadvantage of enforced modularity?

% Performance (marshalling, unmarshalling of messages)

* 10% of CPU cycles in Google's DC spent running protobuf operations

% Semantic coupling may render functional decoupling moot

Revisiting duality for modern HW

o How to build an OS that scales across NUMA nodes!?

% NrOS [OSDI21]

o How to build an OS for heterogeneous CPU cores?

¢ Barrelfish [SOSP'09]

o How to build an OS for disaggregated resources?

% LegoOS [OSDI'1 8]

Node-replicated (Nr) OS

monolith kernel
shared state

CPU CPU

cache cache

DRAMO DRAM1

o Motivation?

o Main challenges?

o Tradeoffs!?

NRkernel NRkernel NRkernel

shared shared shared

replica replica replica
CPU [CPU|

ache cache cache

DRAM1 DRAM2

Barrelfish

monolith kernel App App App App

shared state __‘L_____l ______ ,1_ ________ l_ ______ l---,

OS node OS node OS node OS node
Agreement
algorithms 1 State State State //I\\'@%> State
CPU CPU 'l | replica replica replica replica

1
Arch- ifi
cache cache e T T
S o S

DRAMO DRAM1
Heterogeneous %86 X64 ARM ceoe GPU

cores
< Interconnect >

-7

o Motivation?
o Main challenges?

o Tradeoffs!?

Revisiting microkernels with modern PL

o Linux kernel extensibility is important

¢ e.g. Docker relies on OVS, AppArmor, OverlayFS extensions

o Originally implemented using kernel modules

¢ What security/isolation guarantees do these provide!?

o Modern solution!?

¢ Extended Berkeley Packet Filter (eBPF)

eBPF 101

o Framework to run sandboxed programs within linux

“* Why would you want to run these programs within linux?

o How Is sandboxing done? VWhat Is the provided interface!

** Tradeoffs?

o Justify/argue against the below statement:

¢ “The Linux kernel continues its march towards becoming BPF

runtime-powered microkernel”

Further Reading (Optional)

o LegoOS [OSDI'] 8]
o Practical, safe, Linux kernel extensibility [HotOS'| 9]

o An Incremental Path Towards a Safer OS Kernel

[HotOS2 1]

Backup slides

Duality

Message-oriented system Procedure-oriented system
Processes, CreateProcess Monitors, NEW/START
Message Channels External Procedure identifiers
Message Ports ENTRY procedure identifiers
SendMessage; AwaitReply . simple procedure call
(immediate%

SendMessage; . . . AwaitReply FORK; . .. JOIN

(delayed)

SendReply RETURN (from procedure)
main loop of standard resource monitor lock, ENTRY attribute

manager, WaitForMessage statement,
case statement

arms of the case statement ENTRY procedure declarations
selective waiting for messages condition variables, WAIT, SIGNAL

12

Designing good interfaces

o We discussed how server interfaces are defined (IDLs)

o Design considerations for message passing systems:
¢ How do | name processes | want to communicate with?
¢ What is the message format?

¢ Semantics of asynchronous operations?

