Introduction to Differentiable Manifolds
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Exercise series 4, with solutions 2021-10-19

Exercise 4.1 (A little heads-up regarding coordinate vectors). Let ¢ and ¢ be
smooth charts on a smooth manifold M defined on the same domain U. If the
first coordinate functions ¢° and 99 agree (¢° = % on U), this does not imply
8%,0\;; = aiwolp forpeU.

Work out a simple example of this fact e.g. on M = R? by considering on the one
hand the Cartesian coordinates (z,y) and on the other hand the chart (u,v) given
byu=z,v=x+y. ‘
This shows that %JP depends on the whole system (©°,...,¢©" 1), not only on ¢'.

Solution. The two coordinate charts have the following relationship:

U= r=1Uu
v=x+yY y=v—u

By the chain rule we have

0 _9z 0 0y 0 _9 9

ou Ou Oxr Ou Oy Ox Oy
We consider for example the function f(z,y) = zy on R2. The coordinate derivatives
of f with respect to two different charts are

9. _
ox =Y
0 0
o —y—x#%f

Thus the coordinate vectors depends on the whole system.
We consider for example a linear function f(x,y) = ax+by on R?. The coordinate
derivatives of f with respect to two different charts are

0
s =
0 0
i S A
auf “ 7 (%vf
Thus the coordinate vectors depends on the whole system. ([l

Exercise 4.2 (The tangent space of a vector space). Let V be an n-dimensional
vector space.

(a) Let A be the set of linear isomorphisms ¢ : V' — R"™. Show that there is a
topology on V such that all ¢ € A are homeomorphisms. Show that A is a
smooth atlas on V. In other words, any vector space has a natural smooth
structure.

Solution. Pick any isomorphism ¢ : V' — R". Since ¢ is bijective, there is a
unique topology on V such that ¢ is a homeomorphism. We put this topology
on V. Then any other isomorphism 1 : V' — R" is also a homeomorphism
because it can be written as ¢ = (¢ o ¢ 1)y, where ¥ o o~ ! is a linear
isomorphism R™ — R™. The family A is a smooth atlas since the transition
functions are linear isomorphisms 1o~ : R® — R”, which are smooth. [J

(b) Fix a € V. To every v € V we associate the curve passing through a
Y R=>V:it—a+tv

Show that the map ®, : V — T,V : v — ~,(0) is an isomorphism of vector
spaces. Hence we can identify a vector space with its tangent space in a

canonical way.
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Solution. Let us compute ®,(v). We use first the definition of +,(0), then
the definition of the differential Dy ~y. To compute Dyy we use as chart of V
an isomorphism ¢ : V. — R™. We obtain

(pa(v) - 7:;(0)
= DO ’)/[0, idR, 1]
= [7(0), ¢, Do(¢ 0y 0idg (1)]

= (0,6, 2 e=ob(a+ 1v)]

= (0.6, 2 li=olé(a) + to()]
= [a, ¢, 0(v)]
On the other hand, we know by a previous exercise that
viweR"— [a,¢,w] €T,V

is an isomorphism. We can conclude that ®, is an isomorphism as well,
because our computation shows that &, = v o . O

(¢) Let f:V — W be a linear map between vector spaces V,W. Consider the
differential D, f : T,V — TpqyW at any point a € V. Identifying T,V =V
and Ty(,)W = W via the isomorphisms @4, @ (,), show that D, f is identified
with f. That is, show that the following diagram commutes:

Dqf
T,V —=Tya)W
%T Pf(a)
Vv 4>f W

Solution. To check that the diagram commutes, we take two linear isomorphisms

¢:V —-R™and ¢ :V — R" Then for any vector v € V let us show that

la, 6, ()] —5 [ (a), v, $(f(v))]

‘%T T(I)f(a)
v

(o)

In the previous item we have shown that ®,(v) = [a, ¢, ¢(v)], and in the same way
we have ® o) (f(v)) = [f(a),®,9(f(v))]. To finish, we use the definition of D, f to
check that

Do fla, ¢, (v)] = [f(a), $, Dy(ay (@ f 6~ (8(v))
= [f(a), 6, (¥ f ¢~ ") (¢(v))
= [f(a), ¥, ¥ (f(v))]-
Here, we used the fact that Dy (¢ f ¢~ 1) =1 f¢ ! since ¢ f ¢! is a linear map
R™ — R™, ]

Exercise 4.3 (Differential of the determinant function). Consider the determinant
function det : M, (R) — R, where M, (R) ~ R™*™ is the vector space of real n x n,
with its natural smooth structure. We want to compute its differential transforma-
tion D4 det at any matrix A € GL,(R) (i.e. at any invertible matrix),

Dadet : TaMy(R) = Tyep )R
(Note that we may identify T M, (R) with M,,(R) and Tger(4)R with R.)
(a) Verify that det is a smooth function.

Hint: Write the determinant as a sum over all n-permutations.
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Solution. The determinant can be written as

det(A) = Y sgn(o) ] aion

o€eSn 0<i<n

Each of the terms f,(A) := sgn(o) [[p<;jcp @i,0(;) is @ monomial, hence a
smooth function. - a

(b) Show that the differential of det at the identity matrix I € M, (R) is
Dy det(B) = tr(B).
where tr denotes the trace.

Solution. Let’s define a curve yp : R — GL(n) : t — I +tB, for B € GL(n).
Using the identification ®; : GL(n) — Tr(GL(n)) : B — ~3(0) (and the
usual identification T1R = R) we have

Dy det(B) = Dy det(v5(0))
= (det oyp)'(0)

d
- %’t:o (det(I + tB))

d
- Z %L:of"(IHB)
O'ESn

Let us derivate each of the monomials f,.
The coefficients of the matrix A = I 4+-¢B are a; j = 0; j+1b; j, where ; ; is
the Kronecker delta. Note that at ¢ = 0 all the coeflicients that are not on the

diagonal vanish.If o # id,, then the monomial f, has at least two coeflicients
that are not on the diagonal, hence we have % ( fo(I+tB)) =0. Thus
the only term which survives is the one correspondlng to the permutation
o =id,, and we have

Dy det(B) = dﬁ _0 fidn(I+tB)

_d

- d
da

| > (L+tbi)

T 0<i<n

= 1+ttr(B)+t2...
dtt:o( +ttr(B) + )
t

=trB

(c) Show that for arbitrary A € GL,(R), B € M,(R).
Dy det(B) = (det A) tr(A™1B)
Hint: Write det(A + tB) = (det A)(det(I +tA~'B)).

Solution. Similarly, we define y5 : R — GL(n) : t - A+tB, for B € GL(n).
With the identification ®4 : GL(n) — Ta(GL(n)) : B — v5(0) we have

D 4 det(B) = D4 det(y(0))

= (det oyp)’'(0)
d

dt lt=0
= det(A) }1_1)%
= det(A) tr(A™1B)

(det(A + tB))

1+t tr(A7IB) +O(t?)) — 1
t

(d) Show that D 4 det is the null linear transformation if A =0 and n > 2.
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Solution. It suffices to check that f;(¢) =0 when ¢ = 0 for the function
fB(t) = det(A + tB) = det(tB) = t" det(B).
Now, f(t) = nt"1det(B), thus f5(0) = 0 as required. O

Exercise 4.4 (Diffeomorphic manifolds have the same dimension). Let M and N
be nonempty diffeomorphic manifolds. Show that dimM = dimN.

Solution. Let m,n be the dimensions of M, N respectively. Let f : M — N be
a diffeomorphism. Take any point p € M and let ¢ = f(p) € N. The differential
transformation
Dyf:T,M — TyN
is a linear isomorphism, because it admits as inverse the map
Dy(f~1) : T,N — T,M.

Therefore T),M is isomorphic to T4 N. On the other hand, we have T,M ~ R™ and
TyN ~ R". It follows that m = n. O

Exercise 4.5 (Tangent vectors as derivations). Let M be a C¥ manifold, k¥ > 1, and
let p € M. Show that the map v, : X € T,M — Dx € Der,M defined by

Dx : f € C*(M,R) — D,f(X) € Ty, yR=R

is linear and injective.
Hint: To prove injectivity, take a chart ¢ that is defined at p. Any vector X € T, M can be written
as X = 33, X' 55:[p. Show that Dx(¢’) = X’
Solution. The equation Dx(¢’) = X7, which we will prove below, implies that v, is
injective because it says that the components X7 of the vector X (and hence, the
vector X)) can be determined from Dx.

The vector X is of the form X = [p, ¢, v| for some v € R"™. The components of v
are the coefficients X7, because

X =p, @Z),szei] = sz[p, o, el = Z”Zaw‘ |p-

7 %

Thus it is sufficient to prove that Dy (¢7) = v7.
By definition of Dx we have
Dy(¢7) = Dype (X),
thus we have to compute the differential of ¢/. Note that ¢/ = 7/ o ¢, where

7 UeR"— x7 € R is the projection on the j-th axis. To compute the differential
of ¢’ we use the local expression

Pl =¢ od " =nlogog ! =

Hence we have

0

Exercise 4.6 (Nonvectorial derivations® — optional). Let M be a C*-differentiable
n-manifold and let Der, M be the vector space of derivations at some point p € M.
4
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(a)

()

If M is a smooth manifold, show that Der,(M) has dimension n.

Hint: Prove Hadamard’s lemma: any f € C'**(M), can be locally written as f(p) +
>, ¢ fi, with fi € CF(M), ¢ a chart satisfying ¢(p) = 0.

Solution. Proof of Hadamard’s lemma: Consider the local expression g =
fo=1Ffo <p_1. For x near the origin, we can write

1
0
—/0 ag(tm)dt
1 .
:/ Z@ig(tm)xldt
U
:ingi(a})dt

1
- / Big(tx) dt
0

is Ck. Then we define f; = g; o .

It follows that any derivation X € Der,M is a tangent vector, because
it is determined by the n numbers X (¢°). Indeed, for a function f we can
write f(0) + >, ¢'f; using Hadamard’s lemma; then we compute

X(f)=X(FW)+> X filp) + Z@X(fz)
M i i 5

where

0

Let I C C¥(M,R) be the ideal of functions that vanish at p. Show that a
linear map X : C¥(M) — R satisfies the Leibniz identity iff it vanishes on 2
and on R. Conclude that Der,(M) = (I/1?)*.

Solution. If X satisfies Leibniz, we see that X (h) = 0 for any h € I? by
writing h = fg, with f, g € I, and computing
X(h) = X(f9) = X()9(p) + f(p) X(9) = 0.
We also see that X (1) = 0 because
X1)=X(1%)=X1)1+1X(1) = X(1) + X (1)

It follows that X (c) = ¢X (1) =0 for all ¢ € R.
Reciprocally, suppose X vanishes on I? and on R. To prove the Leibniz

identity

X(fg) =X(f)gp) + f(p) X(9)
we do as follows. Write f = fo+ f, g = go + g, where f = f — fy and
g =g — go are elements of I. Note that X (f) = X(f) because X (f(0)) = 0.
Then we compute

X(fg):X(( F(0) + £)(g(0) +
X(f(0)g(0)) + X(f (0)) X(f(0)g) +X(f9)
= 0+9(0) X(f) + £(0) X(f)
= X(f)9(0) + £(0) X(g)

0

(Newns—Walker, 1956) If k < oo, show that I/I? is infinite dimensional if
k < oo. Conclude that Der,M is infinite dimensional.

Hint: (From Laird E Taylor (1972), “The tangent space of a C* manifold”) For the case
M =R, p = 0, show that the functions f,(t) = |t|° with k < o < k + 1, taken modulo I?,
are linearly independent. To distinguish these functions, define the vanishing order ord(f)
of a function f € I as the maximum « > 0 such that lim;_.¢ % = 0 and use Taylor’s
theorem to show that ord(f) & (k,k + 1) if f € I*.

)
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Solution. A function g € I can be written, using Taylor’s theorem, as g =
Si<icr @it’ + rg(t)tF, with a; € R and ry a continuous function. Therefore
a function h € I? can be written as h = D o<j<k bi + rR()tF) with 7y,
continuous. It follows that ord(h) > k + 1 if all b; = 0, otherwise ord(h) is
the smallest ¢ such that b; # 0.

Now let us prove that the functions f, are linearly independent modulo
I?. Consider a finite linear combination f = YoicCife, €1 2 where o; are
different numbers in the interval (k, k + 1). We see that all ¢; are 0, because

otherwise
ord(f) = ms%cai € (k,k+1).

ci

For a general manifold M we use a chart ¢ satisfying ¢(p) = 0 and a
curve () = ¢~ !(teg). The functions g, = f,(¢") are linearly independent
modulo the I? of M at p because the functions f, = g, o7 are linearly
independent modulo the I? of R. ]



