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Exercise 4.1 (A little heads-up regarding coordinate vectors). Let ϕ and ψ be
smooth charts on a smooth manifold M defined on the same domain U . If the
first coordinate functions ϕ0 and ψ0 agree (ϕ0 ≡ ψ0 on U), this does not imply
∂
∂ϕ0 |p = ∂

∂ψ0 |p for p ∈ U .

Work out a simple example of this fact e.g. on M = R2 by considering on the one
hand the Cartesian coordinates (x, y) and on the other hand the chart (u, v) given
by u = x, v = x+ y.
This shows that ∂

∂ϕi
|p depends on the whole system (ϕ0, . . . , ϕn−1), not only on ϕi.

Solution. The two coordinate charts have the following relationship:{
u = x

v = x+ y

{
x = u

y = v − u

By the chain rule we have

∂

∂u
=
∂x

∂u
· ∂
∂x

+
∂y

∂u
· ∂
∂y

=
∂

∂x
− ∂

∂y
.

We consider for example the function f(x, y) = xy on R2. The coordinate derivatives
of f with respect to two different charts are

∂

∂x
f = y

∂

∂u
f = y − x 6= ∂

∂x
f

Thus the coordinate vectors depends on the whole system.

We consider for example a linear function f(x, y) = ax+by on R2. The coordinate
derivatives of f with respect to two different charts are

∂

∂x
f = a

∂

∂u
f = a− b 6= ∂

∂x
f

Thus the coordinate vectors depends on the whole system. �

Exercise 4.2 (The tangent space of a vector space). Let V be an n-dimensional
vector space.

(a) Let A be the set of linear isomorphisms ϕ : V → Rn. Show that there is a
topology on V such that all ϕ ∈ A are homeomorphisms. Show that A is a
smooth atlas on V . In other words, any vector space has a natural smooth
structure.

Solution. Pick any isomorphism ϕ : V → Rn. Since ϕ is bijective, there is a
unique topology on V such that ϕ is a homeomorphism. We put this topology
on V . Then any other isomorphism ψ : V → Rn is also a homeomorphism
because it can be written as ψ = (ψ ◦ ϕ−1)ϕ, where ψ ◦ ϕ−1 is a linear
isomorphism Rn → Rn. The family A is a smooth atlas since the transition
functions are linear isomorphisms ψ ◦ϕ−1 : Rn → Rn, which are smooth. �

(b) Fix a ∈ V . To every v ∈ V we associate the curve passing through a

γv : R→ V : t 7→ a+ tv

Show that the map Φa : V → TaV : v 7→ γ′v(0) is an isomorphism of vector
spaces. Hence we can identify a vector space with its tangent space in a
canonical way.
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Solution. Let us compute Φa(v). We use first the definition of γ′v(0), then
the definition of the differential D0 γ. To compute D0γ we use as chart of V
an isomorphism φ : V → Rn. We obtain

Φa(v) = γ′v(0)

= D0 γ[0, idR, 1]

= [γ(0), φ,D0(φ ◦ γ ◦ id−1
R (1)]

= [a, φ,
∂

∂t
|t=0φ(a+ tv)]

= [a, φ,
∂

∂t
|t=0(φ(a) + tφ(v)]

= [a, φ, φ(v)]

On the other hand, we know by a previous exercise that

ν : w ∈ Rn 7→ [a, φ, w] ∈ TaV

is an isomorphism. We can conclude that Φa is an isomorphism as well,
because our computation shows that Φa = ν ◦ ψ. �

(c) Let f : V → W be a linear map between vector spaces V,W . Consider the
differential Daf : TaV → TF (a)W at any point a ∈ V . Identifying TaV ∼= V
and Tf(a)W ∼= W via the isomorphisms Φa, Φf(a), show that Daf is identified
with f . That is, show that the following diagram commutes:

TaV
Daf
// Tf(a)W

V

Φa

OO

f
// W

Φf(a)

OO

Solution. To check that the diagram commutes, we take two linear isomorphisms
φ : V → Rm and ψ : V → Rn. Then for any vector v ∈ V let us show that

[a, φ, φ(v)]
Daf
// [f(a), ψ, ψ(f(v))]

v

Φa

OO

f
// f(v)

Φf(a)

OO

In the previous item we have shown that Φa(v) = [a, φ, φ(v)], and in the same way
we have Φf(a)(f(v)) = [f(a), ψ, ψ(f(v))]. To finish, we use the definition of Da f to
check that

Da f [a, φ, φ(v)] = [f(a), φ,Dφ(a)(ψ f φ
−1)(φ(v))

= [f(a), φ, (ψ f φ−1)(φ(v))

= [f(a), ψ, ψ(f(v))].

Here, we used the fact that Dφ(a)(ψ f φ
−1) = ψ f φ−1 since ψ f φ−1 is a linear map

Rm → Rn. �

Exercise 4.3 (Differential of the determinant function). Consider the determinant
function det : Mn(R) → R, where Mn(R) ' Rn×n is the vector space of real n× n,
with its natural smooth structure. We want to compute its differential transforma-
tion DA det at any matrix A ∈ GLn(R) (i.e. at any invertible matrix),

DA det : TAMn(R)→ Tdet(A)R

(Note that we may identify TAMn(R) with Mn(R) and Tdet(A)R with R.)

(a) Verify that det is a smooth function.
Hint: Write the determinant as a sum over all n-permutations.
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Solution. The determinant can be written as

det(A) =
∑
σ∈Sn

sgn(σ)
∏

0≤i<n
ai,σ(i).

Each of the terms fσ(A) := sgn(σ)
∏

0≤i<n ai,σ(i) is a monomial, hence a
smooth function. �

(b) Show that the differential of det at the identity matrix I ∈Mn(R) is

DI det(B) = tr(B).

where tr denotes the trace.

Solution. Let’s define a curve γB : R→ GL(n) : t→ I + tB, for B ∈ GL(n).
Using the identification ΦI : GL(n) → TI(GL(n)) : B → γ′B(0) (and the
usual identification T1R ∼= R) we have

DI det(B) = DI det(γ′B(0))

= (det ◦γB)′(0)

=
d

dt

∣∣∣
t=0

(det(I + tB))

=
∑
σ∈Sn

d

dt

∣∣∣
t=0

fσ(I + tB)

Let us derivate each of the monomials fσ.
The coefficients of the matrix A = I+tB are ai,j = δi,j+t bi,j , where δi,j is

the Kronecker delta. Note that at t = 0 all the coefficients that are not on the
diagonal vanish.If σ 6= idn, then the monomial fσ has at least two coefficients

that are not on the diagonal, hence we have d
dt

∣∣∣
t=0

(fσ(I + tB)) = 0. Thus

the only term which survives is the one corresponding to the permutation
σ = idn, and we have

DI det(B) =
d

dt

∣∣∣
t=0

fidn(I + tB)

=
d

dt

∣∣∣
t=0

∑
0≤i<n

(1 + t bi,i,)

=
d

dt

∣∣∣
t=0

(1 + t tr(B) + t2 . . . )

= trB

�

(c) Show that for arbitrary A ∈ GLn(R), B ∈Mn(R).

DA det(B) = (detA) tr(A−1B)

Hint: Write det(A+ tB) = (detA)(det(I + tA−1B)).

Solution. Similarly, we define γB : R→ GL(n) : t→ A+ tB, for B ∈ GL(n).
With the identification ΦA : GL(n)→ TA(GL(n)) : B → γ′B(0) we have

DA det(B) = DA det(γ′B(0))

= (det ◦γB)′(0)

=
d

dt

∣∣∣
t=0

(det(A+ tB))

= det(A) lim
t→0

1 + t tr(A−1B) +O(t2))− 1

t

= det(A) tr(A−1B)

�

(d) Show that DA det is the null linear transformation if A = 0 and n ≥ 2.
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Solution. It suffices to check that f ′B(t) = 0 when t = 0 for the function

fB(t) = det(A+ tB) = det(tB) = tn det(B).

Now, f ′B(t) = n tn−1 det(B), thus f ′B(0) = 0 as required. �

Exercise 4.4 (Diffeomorphic manifolds have the same dimension). Let M and N
be nonempty diffeomorphic manifolds. Show that dimM = dimN .

Solution. Let m,n be the dimensions of M , N respectively. Let f : M → N be
a diffeomorphism. Take any point p ∈ M and let q = f(p) ∈ N . The differential
transformation

Dpf : TpM → TqN

is a linear isomorphism, because it admits as inverse the map

Dp(f
−1) : TqN → TpM.

Therefore TpM is isomorphic to TqN . On the other hand, we have TpM ' Rm and
TqN ' Rn. It follows that m = n. �

Exercise 4.5 (Tangent vectors as derivations). Let M be a Ck manifold, k ≥ 1, and
let p ∈M . Show that the map νp : X ∈ TpM 7→ DX ∈ DerpM defined by

DX : f ∈ Ck(M,R) 7→ Dpf(X) ∈ Tf(p)R ∼= R

is linear and injective.
Hint: To prove injectivity, take a chart φ that is defined at p. Any vector X ∈ TpM can be written

as X =
∑
iX

i ∂
∂φi
|p. Show that DX(φj) = Xj .

Solution. The equation DX(φj) = Xj , which we will prove below, implies that νp is
injective because it says that the components Xj of the vector X (and hence, the
vector X) can be determined from DX .

The vector X is of the form X = [p, φ, v] for some v ∈ Rn. The components of v
are the coefficients Xj , because

X = [p, φ,
∑
i

viei] =
∑
i

vi[p, φ, ei] =
∑
i

vi
∂

∂φi
|p.

Thus it is sufficient to prove that DX(φj) = vj .

By definition of DX we have

Dx(φj) = Dpφ
j(X),

thus we have to compute the differential of φj . Note that ϕj = πj ◦ ϕ, where
πj : U ∈ Rn 7→ xj ∈ R is the projection on the j-th axis. To compute the differential
of φj we use the local expression

φj |idR
φj

= φj ◦ φ−1 = πj ◦ φ ◦ φ−1 = πj

Hence we have

Dx(φj) = Dpφ
j [p, φ, v]

= [φj(p), idR, Dφ(p)(φ
j |idR
φj

)(v)]

= [φj(p), idR, Dφ(p)(π
j)(v)]

= [φj(p), idR, π
j(v)]

= [φj(p), idnR, v
j ]

≡ vj ∈ R by the identification Tφj(p)R ≡ R.

�

Exercise 4.6 (Nonvectorial derivations* – optional). Let M be a Ck-differentiable
n-manifold and let DerpM be the vector space of derivations at some point p ∈M .
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(a) If M is a smooth manifold, show that Derp(M) has dimension n.
Hint: Prove Hadamard’s lemma: any f ∈ C1+k(M)p can be locally written as f(p) +∑
i ϕ

ifi, with fi ∈ Ck(M), ϕ a chart satisfying ϕ(p) = 0.

Solution. Proof of Hadamard’s lemma: Consider the local expression g =
fϕ = f ◦ ϕ−1. For x near the origin, we can write

g(x)− g(0) =

∫ 1

0

∂

∂t
g(tx) dt

=

∫ 1

0

∑
i

∂ig(tx)xi dt

=
∑
i

xi gi(x)dt,

where

gi(x) =

∫ 1

0
∂ig(tx) dt

is Ck. Then we define fi = gi ◦ ϕ.
It follows that any derivation X ∈ DerpM is a tangent vector, because

it is determined by the n numbers X(ϕi). Indeed, for a function f we can
write f(0) +

∑
i ϕ

ifi using Hadamard’s lemma; then we compute

X(f) = X(f(p))︸ ︷︷ ︸
=0

+
∑
i

X(ϕi)fi(p) +
∑
i

ϕi(p)︸ ︷︷ ︸
=0

X(fi).

�

(b) Let I ⊆ Ck(M,R) be the ideal of functions that vanish at p. Show that a
linear map X : Ck(M)→ R satisfies the Leibniz identity iff it vanishes on I2

and on R. Conclude that Derp(M) ≡ (I/I2)∗.

Solution. If X satisfies Leibniz, we see that X(h) = 0 for any h ∈ I2 by
writing h = fg, with f, g ∈ I, and computing

X(h) = X(fg) = X(f) g(p) + f(p)X(g) = 0.

We also see that X(1) = 0 because

X(1) = X(12) = X(1) 1 + 1X(1) = X(1) +X(1)

It follows that X(c) = cX(1) = 0 for all c ∈ R.
Reciprocally, suppose X vanishes on I2 and on R. To prove the Leibniz

identity
X(fg) = X(f)g(p) + f(p)X(g)

we do as follows. Write f = f0 + f , g = g0 + g, where f = f − f0 and
g = g − g0 are elements of I. Note that X(f) = X(f) because X(f(0)) = 0.
Then we compute

X(fg) = X
(
(f(0) + f)(g(0) + g)

)
= X(f(0) g(0)) +X(f g(0)) +X(f(0) g) +X(f g)

= 0 + g(0)X(f) + f(0)X(f)

= X(f) g(0) + f(0)X(g)

�

(c) (Newns–Walker, 1956) If k < ∞, show that I/I2 is infinite dimensional if
k <∞. Conclude that DerpM is infinite dimensional.
Hint: (From Laird E Taylor (1972), “The tangent space of a Ck manifold”) For the case

M = R, p = 0, show that the functions fσ(t) = |t|σ with k < σ < k + 1, taken modulo I2,

are linearly independent. To distinguish these functions, define the vanishing order ord(f)

of a function f ∈ I as the maximum α ≥ 0 such that limt→0
f(t)
|t|α = 0 and use Taylor’s

theorem to show that ord(f) 6∈ (k, k + 1) if f ∈ I2.
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Solution. A function g ∈ I can be written, using Taylor’s theorem, as g =∑
1≤i<k ait

i + rg(t)t
k, with ai ∈ R and rg a continuous function. Therefore

a function h ∈ I2 can be written as h =
∑

2≤j≤k bj + rh(t)tk+1, with rh
continuous. It follows that ord(h) ≥ k + 1 if all bi = 0, otherwise ord(h) is
the smallest i such that bi 6= 0.

Now let us prove that the functions fσ are linearly independent modulo
I2. Consider a finite linear combination f =

∑
i cifσi ∈ I2 where σi are

different numbers in the interval (k, k+ 1). We see that all ci are 0, because
otherwise

ord(f) = max
ci 6=0

σi ∈ (k, k + 1).

For a general manifold M we use a chart ϕ satisfying ϕ(p) = 0 and a
curve γ(t) = ϕ−1(te0). The functions gσ = fσ(ϕ0) are linearly independent
modulo the I2 of M at p because the functions fσ = gσ ◦ γ are linearly
independent modulo the I2 of R. �
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