Introduction to Differentiable Manifolds
 EPFL - Fall 2021
 M. Cossarini, B. Santos Correia
 Exercise series 4, with solutions
 2021-10-19

Exercise 4.1 (A little heads-up regarding coordinate vectors). Let φ and ψ be smooth charts on a smooth manifold M defined on the same domain U. If the first coordinate functions φ^{0} and ψ^{0} agree $\left(\varphi^{0} \equiv \psi^{0}\right.$ on U), this does not imply $\left.\frac{\partial}{\partial \varphi^{0}}\right|_{p}=\left.\frac{\partial}{\partial \psi^{0}}\right|_{p}$ for $p \in U$.

Work out a simple example of this fact e.g. on $M=\mathbb{R}^{2}$ by considering on the one hand the Cartesian coordinates (x, y) and on the other hand the chart (u, v) given by $u=x, v=x+y$.
This shows that $\left.\frac{\partial}{\partial \varphi^{i}}\right|_{p}$ depends on the whole system $\left(\varphi^{0}, \ldots, \varphi^{n-1}\right)$, not only on φ^{i}.
Solution. The two coordinate charts have the following relationship:

$$
\left\{\begin{array} { l }
{ u = x } \\
{ v = x + y }
\end{array} \quad \left\{\begin{array}{l}
x=u \\
y=v-u
\end{array}\right.\right.
$$

By the chain rule we have

$$
\frac{\partial}{\partial u}=\frac{\partial x}{\partial u} \cdot \frac{\partial}{\partial x}+\frac{\partial y}{\partial u} \cdot \frac{\partial}{\partial y}=\frac{\partial}{\partial x}-\frac{\partial}{\partial y}
$$

We consider for example the function $f(x, y)=x y$ on \mathbb{R}^{2}. The coordinate derivatives of f with respect to two different charts are

$$
\begin{aligned}
\frac{\partial}{\partial x} f & =y \\
\frac{\partial}{\partial u} f & =y-x \neq \frac{\partial}{\partial x} f
\end{aligned}
$$

Thus the coordinate vectors depends on the whole system.
We consider for example a linear function $f(x, y)=a x+b y$ on \mathbb{R}^{2}. The coordinate derivatives of f with respect to two different charts are

$$
\begin{aligned}
\frac{\partial}{\partial x} f & =a \\
\frac{\partial}{\partial u} f & =a-b \neq \frac{\partial}{\partial x} f
\end{aligned}
$$

Thus the coordinate vectors depends on the whole system.
Exercise 4.2 (The tangent space of a vector space). Let V be an n-dimensional vector space.
(a) Let \mathcal{A} be the set of linear isomorphisms $\varphi: V \rightarrow \mathbb{R}^{n}$. Show that there is a topology on V such that all $\varphi \in \mathcal{A}$ are homeomorphisms. Show that \mathcal{A} is a smooth atlas on V. In other words, any vector space has a natural smooth structure.
Solution. Pick any isomorphism $\varphi: V \rightarrow \mathbb{R}^{n}$. Since φ is bijective, there is a unique topology on V such that φ is a homeomorphism. We put this topology on V. Then any other isomorphism $\psi: V \rightarrow \mathbb{R}^{n}$ is also a homeomorphism because it can be written as $\psi=\left(\psi \circ \varphi^{-1}\right) \varphi$, where $\psi \circ \varphi^{-1}$ is a linear isomorphism $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. The family \mathcal{A} is a smooth atlas since the transition functions are linear isomorphisms $\psi \circ \varphi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, which are smooth.
(b) Fix $a \in V$. To every $v \in V$ we associate the curve passing through a

$$
\gamma_{v}: \mathbb{R} \rightarrow V: t \mapsto a+t v
$$

Show that the map $\Phi_{a}: V \rightarrow T_{a} V: v \mapsto \gamma_{v}^{\prime}(0)$ is an isomorphism of vector spaces. Hence we can identify a vector space with its tangent space in a canonical way.

Solution. Let us compute $\Phi_{a}(v)$. We use first the definition of $\gamma_{v}^{\prime}(0)$, then the definition of the differential $D_{0} \gamma$. To compute $D_{0} \gamma$ we use as chart of V an isomorphism $\phi: V \rightarrow \mathbb{R}^{n}$. We obtain

$$
\begin{aligned}
\Phi_{a}(v) & =\gamma_{v}^{\prime}(0) \\
& =\mathrm{D}_{0} \gamma\left[0, \mathrm{id}_{\mathbb{R}}, 1\right] \\
& =\left[\gamma(0), \phi, \mathrm{D}_{0}\left(\phi \circ \gamma \circ \mathrm{id}_{\mathbb{R}}^{-1}(1)\right]\right. \\
& =\left[a, \phi,\left.\frac{\partial}{\partial t}\right|_{t=0} \phi(a+t v)\right] \\
& =\left[a, \phi,\left.\frac{\partial}{\partial t}\right|_{t=0}(\phi(a)+t \phi(v)]\right. \\
& =[a, \phi, \phi(v)]
\end{aligned}
$$

On the other hand, we know by a previous exercise that

$$
\nu: w \in \mathbb{R}^{n} \mapsto[a, \phi, w] \in T_{a} V
$$

is an isomorphism. We can conclude that Φ_{a} is an isomorphism as well, because our computation shows that $\Phi_{a}=\nu \circ \psi$.
(c) Let $f: V \rightarrow W$ be a linear map between vector spaces V, W. Consider the differential $D_{a} f: T_{a} V \rightarrow T_{F(a)} W$ at any point $a \in V$. Identifying $T_{a} V \cong V$ and $T_{f(a)} W \cong W$ via the isomorphisms $\Phi_{a}, \Phi_{f(a)}$, show that $D_{a} f$ is identified with f. That is, show that the following diagram commutes:

Solution. To check that the diagram commutes, we take two linear isomorphisms $\phi: V \rightarrow \mathbb{R}^{m}$ and $\psi: V \rightarrow \mathbb{R}^{n}$. Then for any vector $v \in V$ let us show that

$$
\begin{gathered}
{[a, \phi, \phi(v)] \xrightarrow{D_{a} f}[f(a), \psi, \psi(f(v))]} \\
\left.\quad \Phi_{a}\right|_{f} \xrightarrow{\uparrow_{\Phi_{f(a)}}} \\
\quad f(v)
\end{gathered}
$$

In the previous item we have shown that $\Phi_{a}(v)=[a, \phi, \phi(v)]$, and in the same way we have $\Phi_{f(a)}(f(v))=[f(a), \psi, \psi(f(v))]$. To finish, we use the definition of $\mathrm{D}_{a} f$ to check that

$$
\begin{aligned}
\mathrm{D}_{a} f[a, \phi, \phi(v)] & =\left[f(a), \phi, \mathrm{D}_{\phi(a)}\left(\psi f \phi^{-1}\right)(\phi(v))\right. \\
& =\left[f(a), \phi,\left(\psi f \phi^{-1}\right)(\phi(v))\right. \\
& =[f(a), \psi, \psi(f(v))]
\end{aligned}
$$

Here, we used the fact that $\mathrm{D}_{\phi(a)}\left(\psi f \phi^{-1}\right)=\psi f \phi^{-1}$ since $\psi f \phi^{-1}$ is a linear map $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

Exercise 4.3 (Differential of the determinant function). Consider the determinant function det : $M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$, where $M_{n}(\mathbb{R}) \simeq \mathbb{R}^{n \times n}$ is the vector space of real $n \times n$, with its natural smooth structure. We want to compute its differential transformation D_{A} det at any matrix $A \in \mathrm{GL}_{n}(\mathbb{R})$ (i.e. at any invertible matrix),

$$
D_{A} \operatorname{det}: T_{A} M_{n}(\mathbb{R}) \rightarrow T_{\operatorname{det}(A)} \mathbb{R}
$$

(Note that we may identify $T_{A} M_{n}(\mathbb{R})$ with $M_{n}(\mathbb{R})$ and $T_{\operatorname{det}(A)} \mathbb{R}$ with \mathbb{R}.)
(a) Verify that det is a smooth function.

Hint: Write the determinant as a sum over all n-permutations.

Solution. The determinant can be written as

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{0 \leq i<n} a_{i, \sigma(i)} .
$$

Each of the terms $f_{\sigma}(A):=\operatorname{sgn}(\sigma) \prod_{0 \leq i<n} a_{i, \sigma(i)}$ is a monomial, hence a smooth function.
(b) Show that the differential of det at the identity matrix $I \in M_{n}(\mathbb{R})$ is

$$
D_{I} \operatorname{det}(B)=\operatorname{tr}(B) .
$$

where tr denotes the trace.
Solution. Let's define a curve $\gamma_{B}: \mathbb{R} \rightarrow G L(n): t \rightarrow I+t B$, for $B \in G L(n)$. Using the identification $\Phi_{I}: G L(n) \rightarrow T_{I}(G L(n)): B \rightarrow \gamma_{B}^{\prime}(0)$ (and the usual identification $T_{1} \mathbb{R} \cong \mathbb{R}$) we have

$$
\begin{aligned}
D_{I} \operatorname{det}(B) & =D_{I} \operatorname{det}\left(\gamma_{B}^{\prime}(0)\right) \\
& =\left(\operatorname{det} \circ \gamma_{B}\right)^{\prime}(0) \\
& =\left.\frac{d}{d t}\right|_{t=0}(\operatorname{det}(I+t B)) \\
& =\left.\sum_{\sigma \in S_{n}} \frac{d}{d t}\right|_{t=0} f_{\sigma}(I+t B)
\end{aligned}
$$

Let us derivate each of the monomials f_{σ}.
The coefficients of the matrix $A=I+t B$ are $a_{i, j}=\delta_{i, j}+t b_{i, j}$, where $\delta_{i, j}$ is the Kronecker delta. Note that at $t=0$ all the coefficients that are not on the diagonal vanish.If $\sigma \neq \mathrm{id}_{n}$, then the monomial f_{σ} has at least two coefficients that are not on the diagonal, hence we have $\left.\frac{d}{d t}\right|_{t=0}\left(f_{\sigma}(I+t B)\right)=0$. Thus the only term which survives is the one corresponding to the permutation $\sigma=\mathrm{id}_{n}$, and we have

$$
\begin{aligned}
D_{I} \operatorname{det}(B) & =\left.\frac{d}{d t}\right|_{t=0} f_{\mathrm{id}_{n}}(I+t B) \\
& =\left.\frac{d}{d t}\right|_{t=0} \sum_{0 \leq i<n}\left(1+t b_{i, i,}\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(1+t \operatorname{tr}(B)+t^{2} \ldots\right) \\
& =\operatorname{tr} B
\end{aligned}
$$

(c) Show that for arbitrary $A \in \mathrm{GL}_{n}(\mathbb{R}), B \in M_{n}(\mathbb{R})$.

$$
D_{A} \operatorname{det}(B)=(\operatorname{det} A) \operatorname{tr}\left(A^{-1} B\right)
$$

Hint: Write $\operatorname{det}(A+t B)=(\operatorname{det} A)\left(\operatorname{det}\left(I+t A^{-1} B\right)\right)$.
Solution. Similarly, we define $\gamma_{B}: \mathbb{R} \rightarrow G L(n): t \rightarrow A+t B$, for $B \in G L(n)$.
With the identification $\Phi_{A}: G L(n) \rightarrow T_{A}(G L(n)): B \rightarrow \gamma_{B}^{\prime}(0)$ we have

$$
\begin{aligned}
D_{A} \operatorname{det}(B) & =D_{A} \operatorname{det}\left(\gamma_{B}^{\prime}(0)\right) \\
& =\left(\operatorname{det} 0 \gamma_{B}\right)^{\prime}(0) \\
& =\left.\frac{d}{d t}\right|_{t=0}(\operatorname{det}(A+t B)) \\
& =\operatorname{det}(A) \lim _{t \rightarrow 0} \frac{\left.1+t \operatorname{tr}\left(A^{-1} B\right)+O\left(t^{2}\right)\right)-1}{t} \\
& =\operatorname{det}(A) \operatorname{tr}\left(A^{-1} B\right)
\end{aligned}
$$

(d) Show that D_{A} det is the null linear transformation if $A=0$ and $n \geq 2$.

Solution. It suffices to check that $f_{B}^{\prime}(t)=0$ when $t=0$ for the function

$$
f_{B}(t)=\operatorname{det}(A+t B)=\operatorname{det}(t B)=t^{n} \operatorname{det}(B) .
$$

Now, $f_{B}^{\prime}(t)=n t^{n-1} \operatorname{det}(B)$, thus $f_{B}^{\prime}(0)=0$ as required.
Exercise 4.4 (Diffeomorphic manifolds have the same dimension). Let M and N be nonempty diffeomorphic manifolds. Show that $\operatorname{dim} M=\operatorname{dim} N$.

Solution. Let m, n be the dimensions of M, N respectively. Let $f: M \rightarrow N$ be a diffeomorphism. Take any point $p \in M$ and let $q=f(p) \in N$. The differential transformation

$$
D_{p} f: T_{p} M \rightarrow T_{q} N
$$

is a linear isomorphism, because it admits as inverse the map

$$
D_{p}\left(f^{-1}\right): T_{q} N \rightarrow T_{p} M
$$

Therefore $T_{p} M$ is isomorphic to $T_{q} N$. On the other hand, we have $T_{p} M \simeq \mathbb{R}^{m}$ and $T_{q} N \simeq \mathbb{R}^{n}$. It follows that $m=n$.

Exercise 4.5 (Tangent vectors as derivations). Let M be a \mathcal{C}^{k} manifold, $k \geq 1$, and let $p \in M$. Show that the map $\nu_{p}: X \in T_{p} M \mapsto D_{X} \in \operatorname{Der}_{p} M$ defined by

$$
D_{X}: f \in C^{k}(M, \mathbb{R}) \mapsto D_{p} f(X) \in T_{f(p)} \mathbb{R} \cong \mathbb{R}
$$

is linear and injective.
Hint: To prove injectivity, take a chart ϕ that is defined at p. Any vector $X \in T_{p} M$ can be written as $X=\left.\sum_{i} X^{i} \frac{\partial}{\partial \phi^{i}}\right|_{p}$. Show that $D_{X}\left(\phi^{j}\right)=X^{j}$.

Solution. The equation $D_{X}\left(\phi^{j}\right)=X^{j}$, which we will prove below, implies that ν_{p} is injective because it says that the components X^{j} of the vector X (and hence, the vector X) can be determined from D_{X}.

The vector X is of the form $X=[p, \phi, v]$ for some $v \in \mathbb{R}^{n}$. The components of v are the coefficients X^{j}, because

$$
X=\left[p, \phi, \sum_{i} v^{i} e_{i}\right]=\sum_{i} v^{i}\left[p, \phi, e_{i}\right]=\left.\sum_{i} v^{i} \frac{\partial}{\partial \phi^{i}}\right|_{p} .
$$

Thus it is sufficient to prove that $D_{X}\left(\phi^{j}\right)=v^{j}$.
By definition of D_{X} we have

$$
D_{x}\left(\phi^{j}\right)=D_{p} \phi^{j}(X),
$$

thus we have to compute the differential of ϕ^{j}. Note that $\varphi^{j}=\pi^{j} \circ \varphi$, where $\pi^{j}: U \in \mathbb{R}^{n} \mapsto x^{j} \in \mathbb{R}$ is the projection on the j-th axis. To compute the differential of ϕ^{j} we use the local expression

$$
\left.\phi^{j}\right|_{\phi^{j}} ^{\mathrm{id}_{\mathbb{R}}}=\phi^{j} \circ \phi^{-1}=\pi^{j} \circ \phi \circ \phi^{-1}=\pi^{j}
$$

Hence we have

$$
\begin{aligned}
D_{x}\left(\phi^{j}\right) & =D_{p} \phi^{j}[p, \phi, v] \\
& =\left[\phi^{j}(p), \operatorname{id}_{\mathbb{R}}, D_{\phi(p)}\left(\left.\phi^{j}\right|_{\phi_{\mathbb{R}}} ^{\mathrm{id}_{\mathfrak{j}}}\right)(v)\right] \\
& =\left[\phi^{j}(p), \operatorname{id}_{\mathbb{R}}, D_{\phi(p)}\left(\pi^{j}\right)(v)\right] \\
& =\left[\phi^{j}(p), \operatorname{id}_{\mathbb{R}}, \pi^{j}(v)\right] \\
& =\left[\phi^{j}(p), \mathrm{id}_{\mathbb{R}}^{n}, v^{j}\right] \\
& \equiv v^{j} \in \mathbb{R} \quad \text { by the identification } T_{\phi^{j}(p)} \mathbb{R} \equiv \mathbb{R} .
\end{aligned}
$$

 n-manifold and let $\operatorname{Der}_{p} M$ be the vector space of derivations at some point $p \in M$.
(a) If M is a smooth manifold, show that $\operatorname{Der}_{p}(M)$ has dimension n.

Hint: Prove Hadamard's lemma: any $f \in \mathcal{C}^{1+k}(M)_{p}$ can be locally written as $f(p)+$ $\sum_{i} \varphi^{i} f_{i}$, with $f_{i} \in \mathcal{C}^{k}(M), \varphi$ a chart satisfying $\varphi(p)=0$.
Solution. Proof of Hadamard's lemma: Consider the local expression $g=$ $f_{\varphi}=f \circ \varphi^{-1}$. For x near the origin, we can write

$$
\begin{aligned}
g(x)-g(0) & =\int_{0}^{1} \frac{\partial}{\partial t} g(t x) \mathrm{d} t \\
& =\int_{0}^{1} \sum_{i} \partial_{i} g(t x) x^{i} \mathrm{~d} t \\
& =\sum_{i} x^{i} g_{i}(x) \mathrm{d} t,
\end{aligned}
$$

where

$$
g_{i}(x)=\int_{0}^{1} \partial_{i} g(t x) \mathrm{d} t
$$

is \mathcal{C}^{k}. Then we define $f_{i}=g_{i} \circ \varphi$.
It follows that any derivation $X \in \operatorname{Der}_{p} M$ is a tangent vector, because it is determined by the n numbers $X\left(\varphi^{i}\right)$. Indeed, for a function f we can write $f(0)+\sum_{i} \varphi^{i} f_{i}$ using Hadamard's lemma; then we compute

$$
X(f)=\underbrace{X(f(p))}_{=0}+\sum_{i} X\left(\varphi^{i}\right) f_{i}(p)+\sum_{i} \underbrace{\varphi^{i}(p)}_{=0} X\left(f_{i}\right) .
$$

(b) Let $I \subseteq C^{k}(M, \mathbb{R})$ be the ideal of functions that vanish at p. Show that a linear map $X: \mathcal{C}^{k}(M) \rightarrow \mathbb{R}$ satisfies the Leibniz identity iff it vanishes on I^{2} and on \mathbb{R}. Conclude that $\operatorname{Der}_{p}(M) \equiv\left(I / I^{2}\right)^{*}$.
Solution. If X satisfies Leibniz, we see that $X(h)=0$ for any $h \in I^{2}$ by writing $h=f g$, with $f, g \in I$, and computing

$$
X(h)=X(f g)=X(f) g(p)+f(p) X(g)=0 .
$$

We also see that $X(1)=0$ because

$$
X(1)=X\left(1^{2}\right)=X(1) 1+1 X(1)=X(1)+X(1)
$$

It follows that $X(c)=c X(1)=0$ for all $c \in \mathbb{R}$.
Reciprocally, suppose X vanishes on I^{2} and on \mathbb{R}. To prove the Leibniz identity

$$
X(f g)=X(f) g(p)+f(p) X(g)
$$

we do as follows. Write $f=f_{0}+\bar{f}, g=g_{0}+\bar{g}$, where $\bar{f}=f-f_{0}$ and $g=\bar{g}-g_{0}$ are elements of I. Note that $X(f)=X(\bar{f})$ because $X(f(0))=0$. Then we compute

$$
\begin{aligned}
X(f g) & =X((f(0)+\bar{f})(g(0)+\bar{g})) \\
& =X(f(0) g(0))+X(\bar{f} g(0))+X(f(0) \bar{g})+X(\bar{f} \bar{g}) \\
& =0+g(0) X(\bar{f})+f(0) X(\bar{f}) \\
& =X(f) g(0)+f(0) X(g)
\end{aligned}
$$

(c) (Newns-Walker, 1956) If $k<\infty$, show that I / I^{2} is infinite dimensional if $k<\infty$. Conclude that $\operatorname{Der}_{p} M$ is infinite dimensional.
Hint: (From Laird E Taylor (1972), "The tangent space of a C^{k} manifold") For the case $M=\mathbb{R}, p=0$, show that the functions $f_{\sigma}(t)=|t|^{\sigma}$ with $k<\sigma<k+1$, taken modulo I^{2}, are linearly independent. To distinguish these functions, define the vanishing order ord (f) of a function $f \in I$ as the maximum $\alpha \geq 0$ such that $\lim _{t \rightarrow 0} \frac{f(t)}{|t|^{\alpha}}=0$ and use Taylor's theorem to show that $\operatorname{ord}(f) \notin(k, k+1)$ if $f \in I^{2}$.

Solution. A function $g \in I$ can be written, using Taylor's theorem, as $g=$ $\sum_{1 \leq i<k} a_{i} t^{i}+r_{g}(t) t^{k}$, with $a_{i} \in \mathbb{R}$ and r_{g} a continuous function. Therefore a function $h \in I^{2}$ can be written as $h=\sum_{2 \leq j \leq k} b_{j}+r_{h}(t) t^{k+1}$, with r_{h} continuous. It follows that $\operatorname{ord}(h) \geq k+1$ if all $b_{i}=0$, otherwise $\operatorname{ord}(h)$ is the smallest i such that $b_{i} \neq 0$.

Now let us prove that the functions f_{σ} are linearly independent modulo I^{2}. Consider a finite linear combination $f=\sum_{i} c_{i} f_{\sigma_{i}} \in I^{2}$ where σ_{i} are different numbers in the interval $(k, k+1)$. We see that all c_{i} are 0 , because otherwise

$$
\operatorname{ord}(f)=\max _{c_{i} \neq 0} \sigma_{i} \in(k, k+1) .
$$

For a general manifold M we use a chart φ satisfying $\varphi(p)=0$ and a curve $\gamma(t)=\varphi^{-1}\left(t e_{0}\right)$. The functions $g_{\sigma}=f_{\sigma}\left(\varphi^{0}\right)$ are linearly independent modulo the I^{2} of M at p because the functions $f_{\sigma}=g_{\sigma} \circ \gamma$ are linearly independent modulo the I^{2} of \mathbb{R}.

