Introduction to Differentiable Manifolds	
$\mathrm{EPFL}-\mathrm{Fall}\ 2021$	M. Cossarini, B. Santos Correia
Exercise series 4, with solutions	2021 – 10 – 19

Exercise 4.1 (A little heads-up regarding coordinate vectors). Let φ and ψ be smooth charts on a smooth manifold M defined on the same domain U. If the first coordinate functions φ^0 and ψ^0 agree ($\varphi^0 \equiv \psi^0$ on U), this does not imply $\frac{\partial}{\partial \varphi^0}|_p = \frac{\partial}{\partial \psi^0}|_p$ for $p \in U$.

Work out a simple example of this fact e.g. on $M = \mathbb{R}^2$ by considering on the one hand the Cartesian coordinates (x, y) and on the other hand the chart (u, v) given by u = x, v = x + y.

This shows that $\frac{\partial}{\partial \varphi^i}|_p$ depends on the whole system $(\varphi^0, \ldots, \varphi^{n-1})$, not only on φ^i .

Solution. The two coordinate charts have the following relationship:

$$\begin{cases} u = x \\ v = x + y \end{cases} \quad \begin{cases} x = u \\ y = v - u \end{cases}$$

By the chain rule we have

$$\frac{\partial}{\partial u} = \frac{\partial x}{\partial u} \cdot \frac{\partial}{\partial x} + \frac{\partial y}{\partial u} \cdot \frac{\partial}{\partial y} = \frac{\partial}{\partial x} - \frac{\partial}{\partial y}.$$

We consider for example the function f(x, y) = xy on \mathbb{R}^2 . The coordinate derivatives of f with respect to two different charts are

$$\begin{aligned} &\frac{\partial}{\partial x}f = y\\ &\frac{\partial}{\partial u}f = y - x \neq \frac{\partial}{\partial x}f \end{aligned}$$

Thus the coordinate vectors depends on the whole system.

We consider for example a linear function f(x, y) = ax + by on \mathbb{R}^2 . The coordinate derivatives of f with respect to two different charts are

$$\frac{\partial}{\partial x}f = a$$
$$\frac{\partial}{\partial u}f = a - b \neq \frac{\partial}{\partial x}f$$

Thus the coordinate vectors depends on the whole system.

Exercise 4.2 (The tangent space of a vector space). Let V be an *n*-dimensional vector space.

(a) Let \mathcal{A} be the set of linear isomorphisms $\varphi : V \to \mathbb{R}^n$. Show that there is a topology on V such that all $\varphi \in \mathcal{A}$ are homeomorphisms. Show that \mathcal{A} is a smooth atlas on V. In other words, any vector space has a natural smooth structure.

Solution. Pick any isomorphism $\varphi: V \to \mathbb{R}^n$. Since φ is bijective, there is a unique topology on V such that φ is a homeomorphism. We put this topology on V. Then any other isomorphism $\psi: V \to \mathbb{R}^n$ is also a homeomorphism because it can be written as $\psi = (\psi \circ \varphi^{-1})\varphi$, where $\psi \circ \varphi^{-1}$ is a linear isomorphism $\mathbb{R}^n \to \mathbb{R}^n$. The family \mathcal{A} is a smooth atlas since the transition functions are linear isomorphisms $\psi \circ \varphi^{-1} : \mathbb{R}^n \to \mathbb{R}^n$, which are smooth. \Box

(b) Fix $a \in V$. To every $v \in V$ we associate the curve passing through a

$$\gamma_v : \mathbb{R} \to V : t \mapsto a + tv$$

Show that the map $\Phi_a : V \to T_a V : v \mapsto \gamma'_v(0)$ is an isomorphism of vector spaces. Hence we can identify a vector space with its tangent space in a canonical way.

Solution. Let us compute $\Phi_a(v)$. We use first the definition of $\gamma'_v(0)$, then the definition of the differential $D_0 \gamma$. To compute $D_0 \gamma$ we use as chart of Van isomorphism $\phi: V \to \mathbb{R}^n$. We obtain

$$\begin{aligned} \Phi_a(v) &= \gamma'_v(0) \\ &= D_0 \,\gamma[0, \mathrm{id}_{\mathbb{R}}, 1] \\ &= [\gamma(0), \phi, D_0(\phi \circ \gamma \circ \mathrm{id}_{\mathbb{R}}^{-1}(1)] \\ &= [a, \phi, \frac{\partial}{\partial t}|_{t=0}\phi(a+tv)] \\ &= [a, \phi, \frac{\partial}{\partial t}|_{t=0}(\phi(a)+t\phi(v)] \\ &= [a, \phi, \phi(v)] \end{aligned}$$

On the other hand, we know by a previous exercise that

$$\nu: w \in \mathbb{R}^n \mapsto [a, \phi, w] \in T_a V$$

is an isomorphism. We can conclude that Φ_a is an isomorphism as well, because our computation shows that $\Phi_a = \nu \circ \psi$.

(c) Let $f: V \to W$ be a *linear* map between vector spaces V, W. Consider the differential $D_a f: T_a V \to T_{F(a)} W$ at any point $a \in V$. Identifying $T_a V \cong V$ and $T_{f(a)} W \cong W$ via the isomorphisms $\Phi_a, \Phi_{f(a)}$, show that $D_a f$ is identified with f. That is, show that the following diagram commutes:

Solution. To check that the diagram commutes, we take two linear isomorphisms $\phi: V \to \mathbb{R}^m$ and $\psi: V \to \mathbb{R}^n$. Then for any vector $v \in V$ let us show that

$$\begin{bmatrix} a, \phi, \phi(v) \end{bmatrix} \xrightarrow{D_a f} [f(a), \psi, \psi(f(v))] \\ \Phi_a \uparrow \qquad \qquad \uparrow \Phi_{f(a)} \\ v \xrightarrow{f} f(v)$$

In the previous item we have shown that $\Phi_a(v) = [a, \phi, \phi(v)]$, and in the same way we have $\Phi_{f(a)}(f(v)) = [f(a), \psi, \psi(f(v))]$. To finish, we use the definition of $D_a f$ to check that

$$\begin{aligned} \mathbf{D}_{a} f[a, \phi, \phi(v)] &= [f(a), \phi, \mathbf{D}_{\phi(a)}(\psi f \phi^{-1})(\phi(v)) \\ &= [f(a), \phi, (\psi f \phi^{-1})(\phi(v)) \\ &= [f(a), \psi, \psi(f(v))]. \end{aligned}$$

Here, we used the fact that $D_{\phi(a)}(\psi f \phi^{-1}) = \psi f \phi^{-1}$ since $\psi f \phi^{-1}$ is a linear map $\mathbb{R}^m \to \mathbb{R}^n$.

Exercise 4.3 (Differential of the determinant function). Consider the determinant function det : $M_n(\mathbb{R}) \to \mathbb{R}$, where $M_n(\mathbb{R}) \simeq \mathbb{R}^{n \times n}$ is the vector space of real $n \times n$, with its natural smooth structure. We want to compute its differential transformation D_A det at any matrix $A \in \operatorname{GL}_n(\mathbb{R})$ (i.e. at any invertible matrix),

$$D_A \det : T_A M_n(\mathbb{R}) \to T_{\det(A)} \mathbb{R}$$

(Note that we may identify $T_A M_n(\mathbb{R})$ with $M_n(\mathbb{R})$ and $T_{\det(A)}\mathbb{R}$ with \mathbb{R} .)

(a) Verify that det is a smooth function.*Hint:* Write the determinant as a sum over all *n*-permutations.

Solution. The determinant can be written as

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{0 \le i < n} a_{i,\sigma(i)}.$$

Each of the terms $f_{\sigma}(A) := \operatorname{sgn}(\sigma) \prod_{0 \le i < n} a_{i,\sigma(i)}$ is a monomial, hence a smooth function. \Box

(b) Show that the differential of det at the identity matrix $I \in M_n(\mathbb{R})$ is

$$D_I \det(B) = \operatorname{tr}(B).$$

where tr denotes the trace.

Solution. Let's define a curve $\gamma_B : \mathbb{R} \to GL(n) : t \to I + tB$, for $B \in GL(n)$. Using the identification $\Phi_I : GL(n) \to T_I(GL(n)) : B \to \gamma'_B(0)$ (and the usual identification $T_1\mathbb{R} \cong \mathbb{R}$) we have

$$D_I \det(B) = D_I \det(\gamma'_B(0))$$

= $(\det \circ \gamma_B)'(0)$
= $\frac{d}{dt}\Big|_{t=0} (\det(I+tB))$
= $\sum_{\sigma \in S_n} \frac{d}{dt}\Big|_{t=0} f_{\sigma}(I+tB)$

Let us derivate each of the monomials f_{σ} .

The coefficients of the matrix A = I + tB are $a_{i,j} = \delta_{i,j} + t b_{i,j}$, where $\delta_{i,j}$ is the Kronecker delta. Note that at t = 0 all the coefficients that are not on the diagonal vanish. If $\sigma \neq id_n$, then the monomial f_{σ} has at least two coefficients that are not on the diagonal, hence we have $\frac{d}{dt}\Big|_{t=0} (f_{\sigma}(I + tB)) = 0$. Thus the only term which survives is the one corresponding to the permutation $\sigma = id_n$, and we have

$$D_I \det(B) = \frac{d}{dt}\Big|_{t=0} f_{\mathrm{id}_n}(I+tB)$$

= $\frac{d}{dt}\Big|_{t=0} \sum_{0 \le i < n} (1+t b_{i,i,i})$
= $\frac{d}{dt}\Big|_{t=0} (1+t \operatorname{tr}(B)+t^2\dots)$
= $\operatorname{tr} B$

(c) Show that for arbitrary $A \in GL_n(\mathbb{R}), B \in M_n(\mathbb{R})$.

$$D_A \det(B) = (\det A) \operatorname{tr}(A^{-1}B)$$

Hint: Write $\det(A + tB) = (\det A)(\det(I + tA^{-1}B)).$ Solution. Similarly, we define $\gamma_B : \mathbb{R} \to GL(n) : t \to A + tB$, for $B \in GL(n)$. With the identification $\Phi_A : GL(n) \to T_A(GL(n)) : B \to \gamma'_B(0)$ we have

$$D_A \det(B) = D_A \det(\gamma'_B(0))$$

= $(\det \circ \gamma_B)'(0)$
= $\frac{d}{dt}\Big|_{t=0} (\det(A + tB))$
= $\det(A) \lim_{t \to 0} \frac{1 + t \operatorname{tr}(A^{-1}B) + O(t^2)) - 1}{t}$
= $\det(A) \operatorname{tr}(A^{-1}B)$

(d) Show that D_A det is the null linear transformation if A = 0 and $n \ge 2$.

Solution. It suffices to check that $f'_B(t) = 0$ when t = 0 for the function

$$f_B(t) = \det(A + tB) = \det(tB) = t^n \det(B).$$

Now, $f'_B(t) = n t^{n-1} \det(B)$, thus $f'_B(0) = 0$ as required. \Box

Exercise 4.4 (Diffeomorphic manifolds have the same dimension). Let M and N be nonempty diffeomorphic manifolds. Show that $\dim M = \dim N$.

Solution. Let m, n be the dimensions of M, N respectively. Let $f : M \to N$ be a diffeomorphism. Take any point $p \in M$ and let $q = f(p) \in N$. The differential transformation

$$D_p f: T_p M \to T_q N$$

is a linear isomorphism, because it admits as inverse the map

$$D_p(f^{-1}): T_qN \to T_pM$$

Therefore T_pM is isomorphic to T_qN . On the other hand, we have $T_pM \simeq \mathbb{R}^m$ and $T_qN \simeq \mathbb{R}^n$. It follows that m = n.

Exercise 4.5 (Tangent vectors as derivations). Let M be a \mathcal{C}^k manifold, $k \ge 1$, and let $p \in M$. Show that the map $\nu_p : X \in T_pM \mapsto D_X \in Der_pM$ defined by

$$D_X : f \in C^k(M, \mathbb{R}) \mapsto D_p f(X) \in T_{f(p)} \mathbb{R} \cong \mathbb{R}$$

is linear and injective.

Hint: To prove injectivity, take a chart ϕ that is defined at p. Any vector $X \in T_p M$ can be written as $X = \sum_i X^i \frac{\partial}{\partial \phi^i}|_p$. Show that $D_X(\phi^j) = X^j$.

Solution. The equation $D_X(\phi^j) = X^j$, which we will prove below, implies that ν_p is injective because it says that the components X^j of the vector X (and hence, the vector X) can be determined from D_X .

The vector X is of the form $X = [p, \phi, v]$ for some $v \in \mathbb{R}^n$. The components of v are the coefficients X^j , because

$$X = [p, \phi, \sum_{i} v^{i} e_{i}] = \sum_{i} v^{i} [p, \phi, e_{i}] = \sum_{i} v^{i} \frac{\partial}{\partial \phi^{i}} |_{p}$$

Thus it is sufficient to prove that $D_X(\phi^j) = v^j$.

By definition of D_X we have

$$D_x(\phi^j) = D_p \phi^j(X),$$

thus we have to compute the differential of ϕ^j . Note that $\varphi^j = \pi^j \circ \varphi$, where $\pi^j : U \in \mathbb{R}^n \mapsto x^j \in \mathbb{R}$ is the projection on the *j*-th axis. To compute the differential of ϕ^j we use the local expression

$$\phi^j|_{\phi^j}^{\mathrm{id}_{\mathbb{R}}} = \phi^j \circ \phi^{-1} = \pi^j \circ \phi \circ \phi^{-1} = \pi^j$$

Hence we have

$$D_{x}(\phi^{j}) = D_{p}\phi^{j}[p, \phi, v]$$

$$= [\phi^{j}(p), \mathrm{id}_{\mathbb{R}}, D_{\phi(p)}(\phi^{j}|_{\phi^{j}}^{\mathrm{id}_{\mathbb{R}}})(v)]$$

$$= [\phi^{j}(p), \mathrm{id}_{\mathbb{R}}, D_{\phi(p)}(\pi^{j})(v)]$$

$$= [\phi^{j}(p), \mathrm{id}_{\mathbb{R}}, \pi^{j}(v)]$$

$$= [\phi^{j}(p), \mathrm{id}_{\mathbb{R}}^{n}, v^{j}]$$

$$\equiv v^{j} \in \mathbb{R} \quad \text{by the identification } T_{\phi^{j}(p)}\mathbb{R} \equiv \mathbb{R}.$$

Exercise 4.6 (Nonvectorial derivations^{*} – optional). Let M be a \mathcal{C}^k -differentiable n-manifold and let Der_pM be the vector space of derivations at some point $p \in M$.

(a) If M is a smooth manifold, show that Der_p(M) has dimension n. *Hint:* Prove Hadamard's lemma: any f ∈ C^{1+k}(M)_p can be locally written as f(p) + Σ_i φⁱf_i, with f_i ∈ C^k(M), φ a chart satisfying φ(p) = 0. *Solution.* Proof of Hadamard's lemma: Consider the local expression g = f_φ = f ∘ φ⁻¹. For x near the origin, we can write

$$g(x) - g(0) = \int_0^1 \frac{\partial}{\partial t} g(tx) dt$$
$$= \int_0^1 \sum_i \partial_i g(tx) x^i dt$$
$$= \sum_i x^i g_i(x) dt,$$

where

$$g_i(x) = \int_0^1 \partial_i g(tx) \,\mathrm{d}t$$

is \mathcal{C}^k . Then we define $f_i = g_i \circ \varphi$.

It follows that any derivation $X \in Der_p M$ is a tangent vector, because it is determined by the *n* numbers $X(\varphi^i)$. Indeed, for a function *f* we can write $f(0) + \sum_i \varphi^i f_i$ using Hadamard's lemma; then we compute

$$X(f) = \underbrace{X(f(p))}_{=0} + \sum_{i} X(\varphi^{i}) f_{i}(p) + \sum_{i} \underbrace{\varphi^{i}(p)}_{=0} X(f_{i}).$$

(b) Let $I \subseteq C^k(M, \mathbb{R})$ be the ideal of functions that vanish at p. Show that a linear map $X : C^k(M) \to \mathbb{R}$ satisfies the Leibniz identity iff it vanishes on I^2 and on \mathbb{R} . Conclude that $Der_p(M) \equiv (I/I^2)^*$.

Solution. If X satisfies Leibniz, we see that X(h) = 0 for any $h \in I^2$ by writing h = fg, with $f, g \in I$, and computing

$$X(h) = X(fg) = X(f)g(p) + f(p)X(g) = 0.$$

We also see that X(1) = 0 because

$$X(1) = X(1^2) = X(1) 1 + 1 X(1) = X(1) + X(1)$$

It follows that X(c) = cX(1) = 0 for all $c \in \mathbb{R}$.

Reciprocally, suppose X vanishes on I^2 and on \mathbb{R} . To prove the Leibniz identity

$$X(fg) = X(f)g(p) + f(p)X(g)$$

we do as follows. Write $f = f_0 + \overline{f}$, $g = g_0 + \overline{g}$, where $\overline{f} = f - f_0$ and $g = \overline{g} - g_0$ are elements of I. Note that $X(f) = X(\overline{f})$ because X(f(0)) = 0. Then we compute

$$\begin{split} X(fg) &= X \big((f(0) + \overline{f})(g(0) + \overline{g}) \big) \\ &= X(f(0) g(0)) + X (\overline{f} g(0)) + X (f(0) \overline{g}) + X (\overline{f} \overline{g}) \\ &= 0 + g(0) X (\overline{f}) + f(0) X (\overline{f}) \\ &= X(f) g(0) + f(0) X(g) \end{split}$$

(c) (Newns–Walker, 1956) If $k < \infty$, show that I/I^2 is infinite dimensional if $k < \infty$. Conclude that $Der_p M$ is infinite dimensional. *Hint:* (From Laird E Taylor (1972), "The tangent space of a C^k manifold") For the case $M = \mathbb{R}, p = 0$, show that the functions $f_{\sigma}(t) = |t|^{\sigma}$ with $k < \sigma < k + 1$, taken modulo I^2 , are linearly independent. To distinguish these functions, define the vanishing order ord(f) of a function $f \in I$ as the maximum $\alpha \geq 0$ such that $\lim_{t\to 0} \frac{f(t)}{|t|^{\alpha}} = 0$ and use Taylor's theorem to show that $ord(f) \notin (k, k + 1)$ if $f \in I^2$. Solution. A function $g \in I$ can be written, using Taylor's theorem, as $g = \sum_{1 \leq i < k} a_i t^i + r_g(t) t^k$, with $a_i \in \mathbb{R}$ and r_g a continuous function. Therefore a function $h \in I^2$ can be written as $h = \sum_{2 \leq j \leq k} b_j + r_h(t) t^{k+1}$, with r_h continuous. It follows that $\operatorname{ord}(h) \geq k + 1$ if all $b_i = 0$, otherwise $\operatorname{ord}(h)$ is the smallest i such that $b_i \neq 0$.

Now let us prove that the functions f_{σ} are linearly independent modulo I^2 . Consider a finite linear combination $f = \sum_i c_i f_{\sigma_i} \in I^2$ where σ_i are different numbers in the interval (k, k+1). We see that all c_i are 0, because otherwise

$$\operatorname{ord}(f) = \max_{c_i \neq 0} \sigma_i \in (k, k+1).$$

For a general manifold M we use a chart φ satisfying $\varphi(p) = 0$ and a curve $\gamma(t) = \varphi^{-1}(te_0)$. The functions $g_{\sigma} = f_{\sigma}(\varphi^0)$ are linearly independent modulo the I^2 of M at p because the functions $f_{\sigma} = g_{\sigma} \circ \gamma$ are linearly independent modulo the I^2 of \mathbb{R} . \Box