Introduction to Differentiable Manifolds	
EPFL - Fall 2021	M. Cossarini, B. Santos Correia
Exercise series 6	2021 – 11 – 02

Exercise 6.1. (a) If $f: M \to N$ is an immersion, show that a continuous map $h: L \to M$ is \mathcal{C}^k if the composite $f \circ h$ is \mathcal{C}^k .

- (b) If $f: M \to N$ is an embedding, show that a function $h: M \to L$ is \mathcal{C}^k if the composite $f \circ h$ is \mathcal{C}^k .
- (c) If $f_0: M_0 \to N$ and $f_1: M_1 \to N$ are \mathcal{C}^k embeddings with the same image, show that there is a diffeomorphism $h: M_0 \to M_1$ such that $f_1 \circ h = f_0$.

Exercise 6.2. If S, T are embedded submanifolds of M, N respectively, then $S \times T$ is an embedded submanifold of $M \times N$.

- **Exercise 6.3.** (a) Show that a subset $S \subseteq \mathbb{R}^n$ is a \mathcal{C}^r -embedded k-submanifold if each point $x \in S$ has an open neighborhood W such that the set $S \cap W$ is the graph of a \mathcal{C}^r function that expresses some n-k coordinates in terms of the remaining k coordinates. (More precisely, the function is of the form $f: U \subseteq \mathbb{R}^I \to \mathbb{R}^{I'}$, where I is a k-element subset of $n := \{0, \ldots, n-1\}$, I' is its complement, and $U \subseteq \mathbb{R}^I$ is an open set.)
 - (b) Let S be the set of real $m \times n$ matrices of rank k. Show that S is a smooth submanifold of $\mathbb{R}^{m \times n}$. What is its dimension ? *Hint:* A rank-k matrix $A \in \mathbb{R}^{m \times n}$ has an invertible $k \times k$ submatrix $A|_{I \times J}$ (where $I \subseteq m$, $J \subseteq n$ are k-element sets). Show that the coefficients $A_{i',j'}$ with $i' \notin I$ and $j' \notin J$ can be expressed as a smooth function of the other coefficients of A.

Exercise 6.4. * If M is connected and $f: M \to M$ is a \mathcal{C}^k map such that $f \circ f = f$, then f(M) is an embedded submanifold of M.

Hint: Show that f has constant rank. Use what you know about a linear projector $P: V \to V$ and the complementary projector $id_V - P$.