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Astrophysics III: Stellar and galactic dynamics
Solutions

Problem 1:
For a given potential Φ(~r), the acceleration reads:

~a(~r) = −~∇Φ(~r) (1)

General cartesian:
Φ(~r) = Φ(x, y, z); ~∇Φ(~r) = ∂Φ(x,y,z)

∂x
~ex + ∂Φ(x,y,z)

∂y
~ey + ∂Φ(x,y,z)

∂z
~ez.

Spherical symmetry:
Φ(~r) = Φ(r); ~∇Φ(~r) = dΦ(r)

dr
~er, and ~er = x

r
~ex + y

r
~ey + z

r
~ez.

ax = −dΦ(r)

dr
× x

r
(2)

ay = −dΦ(r)

dr
× y

r
(3)

az = −dΦ(r)

dr
× z

r
(4)

(5)

Cylindrical symmetry:
Φ(~r) = Φ(R, z); ~∇Φ(R, z) = ∂Φ(R,z)

∂r
~er + ∂Φ(R,z)

∂z
~ez, and ~er = x

R
~ex + y

R
~ey.

ax = −∂Φ(R, z)

∂R
× x

R
(6)

ay = −∂Φ(R, z)

∂R
× y

R
(7)

az = −∂Φ(R, z)

∂z
(8)

The derivative of the potentials are the following:

a) Point mass:

dΦ(r)

dr
=
GM

r2
(9)

b) Plummer-Schuster potential:

dΦ(r)

dr
=

GMr

(r2 + e2)3/2
(10)
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c) Miyamoto-Nagai potential:

∂Φ(R, z)

∂R
=

GMR(
R2 +

[
a+
√
z2 + b2

]2)3/2
(11)

∂Φ(R, z)

∂z
=

GMz(
R2 +

[
a+
√
z2 + b2

]2)3/2

(
1 +

a√
z2 + b2

)
(12)

(13)

d) Harmonic potential:

∂Φ(x, y, z)

∂x
= ω2

xx (14)

∂Φ(x, y, z)

∂y
= ω2

yy (15)

∂Φ(x, y, z)

∂z
= ω2

zz (16)

The circular velocity follows trivially :

Vc =

√
R
∂

∂R
Φ(R) (17)

So does the period :

T = 2π
R

Vc(R)
(18)

Problem 2:

a) Point mass:

def Vc(r):

return sqrt( GM /r )

r = sqrt(x∗∗2+y∗∗2+z∗∗2)

cte = −GM/r∗∗3

Fx = cte ∗ x ; Fy = cte ∗ y ; Fz = cte ∗ z

b) Plummer-Schuster potential:

def Vc(r):

return sqrt( GM∗r∗∗2/(r∗∗2+e∗∗2)∗∗1.5 )

r = sqrt(x∗∗2+y∗∗2+z∗∗2)
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cte = −GM/(r∗∗2+e∗∗2)∗∗1.5

Fx = cte ∗ x ; Fy = cte ∗ y ; Fz = cte ∗ z

c) Miyamoto-Nagai potential:

def Vc(r):

return sqrt(GM∗ r∗∗2/(r∗∗2+ (a+b)∗∗2 )∗∗1.5)

R2 = x∗∗2 + y∗∗2 ; Z2 = z∗z ; C1 = sqrt(Z2+b∗∗2)

F = −GM∗(R2+(a+C1)∗∗2)∗∗(−1.5)

Fx = F∗x ; Fy = F∗y ; Fz = F∗(1.+a/C1) ∗ z

d) Harmonic potential:

def Vc(r):

return wx∗r

Fx = −wx∗∗2 ∗ x ; Fy = −wy∗∗2 ∗ y ; Fz = −wz∗∗2 ∗ z

And then, for all potentials:

YP[0] = Y[3] ; YP[1] = Y[4] ; YP[2] = Y[5]

YP[3] = Fx ; YP[4] = Fy ; YP[5] = Fz

def Period(r):

return 2∗pi∗r/Vc(r)

Problem 3:
a) circular orbit:

All we need to do is set our star to go around a plane (the polar plane for axisym-
metric potentials) with the circular velocity. For simplicity, you can just set

y = z = vy = vz = 0

, and then compute the circular velocity for some arbitrary x that you like. Luckily,
this is the default behaviour of orbits.py, so you can just launch the program with the
appropriate potential file, don’t need to specify any positions nor velocities, and let it
run for one orbit:

point mass:
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./orbit.py --norbit 1 --potentialfile=pm.py
Plummer:

./orbit.py --norbit 1 --potentialfile=plummer.py
Miyamoto-Nagai:

./orbit.py --norbit 1 --potentialfile=miyamoto.py
b) quasi periodic orbit:

You can only obtain quasi periodic orbits in axisymmetric potentials, not in the
spherically symmetric ones. To get a quasi periodic orbit, we need to perturb the
circular motion just a bit. The orbits still need to be bounded though, i.e. have total
energy ≤ 0. orbit.py will print out the circular orbit velocity if you give it no velocity
command line arguments. For example, with x=3, it will give vy = 0.533484, so try
modifying the velocity slightly, e.g. like so:

Plummer (in the plane):
./orbit.py --norbit 10 --potentialfile=plummer.py --x=3 --vy=0.5

Or you can give it a small velocity in z-direction:
Miyamoto-Nagai (oscillations in z):

./orbit.py --norbit 10 --potentialfile=miyamoto.py --x=4 --vz=0.2
c) resonant orbit:

Resonant orbits are orbits where at leas two of the the orbital periods have a ratio
of a rational number. This is easily done for the harmonic oscillator, where we can
specify the frequencies in each coordinate direction explicitly. However, we also need
to give the particle an initial velocity in z direction, otherwise it won’t leave the x− y
plane.

harmonic:
./orbit.py --norbit 3 --potentialfile=harmonique.py --vy=1.5 --vz=1.3

Similarly, we also need to give the particle a small initial velocity in z direction for
the Miyamoto-Nagai potential as well. To demonstrate that this will be a resonant
orbit, more work is needed. A clean way of showing it is by computing the epicycle
frequencies (which will be done in the next exercise session). We arrive at For the
Miyamoto-Nagai potential:

Ω2(R) =
GM

(R2 + (a+ b)2)3/2
(19)

ν2(R) =
GM(a+ b)

b(R2 + (a+ b)2)3/2
(20)

Now we choose a and b such that e.g. ν
Ω
is a rational number. For example, let a = 5

and b = 4. Then
ν

Ω
=

√
a+ b

b
= ±3

2
(21)

Make sure to set these values for a and b in miyamoto.py and don’t forget to give
the script some small initial value for vz, otherwise you’ll only get circular orbits, as
that’s what the script does by default.

miyamoto-nagai:
python3 orbit.py --norbit 10 --potentialfile=miyamoto.py --x=1 --vz=0.01
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