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Exercise 5.1. Consider the map

f : R→ R2 : t 7→ (2 + tanh t) · (cos t, sin t).

Show that f is an injective immersion. Is it a smooth embedding?

Solution. First notice that f is an immersion since f ′(t) 6= 0 for every t ∈ R. To see
this observe that
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Hence if f ′(t) 6= 0 then we have Ker f∗
∣∣
t

= {0} which is equivalent to f∗
∣∣
t

injective
for every t ∈ R. Thus it suffices to compute

f ′0(t) =

(
1

cosh2 t

)
cos t− (2 + tanh t) sin t

and

f ′1(t) =

(
1

cosh2 t

)
sin t− (2 + tanh t) cos t

To see that f ′(t) 6= 0 notice that

‖f ′(t)‖2 =

(
1

cosh2 t

)2

+ (2 + tanh t)2 > 0

where ‖ · ‖ denotes the euclidean norm. This proves that f is an immersion. Fur-
thermore the function f is an injection since the function r(t) = ‖f(t)‖ = 2 + tanh t
is strictly increasing.

Note that f is an injective immersion. Let us prove that it is a smooth embedding.
Consider the open set U = {x ∈ R2 : 1 < ‖x‖ < 3}. We will show that f |U : R→ U
is a proper map (hence a closed map; see e.g. Thm. 4.95 of Lee’s book on topological
manifolds). It follows that f is an embedding, since its the composite f = ιU ◦ f |U
of a closed embedding f |U and the inclusion map ιU : U → M , which is an open
embedding.

To see that f |U is proper we let K ⊆ U be a compact set and verify that f−1(K) ⊆
R is compact as well. Since K is closed (because it is a compact subset of a Hausdorff
space) and f is continuous, the preimage f−1(K) is closed. Finally, we have to check
that f−1(K) is bounded. Let a (resp b) be the minimum (resp. maximum) norm
of a point x ∈ X. Note that [a, b] ⊆ (1, 3). It follows that f−1(K) ⊆ [a′, b′], where
a′, b′ are the preimages of a, b by the monotonic map t 7→ 2 + tanh t. �

Exercise 5.2. Consider the following subsets of R2. Which is an embedded sub-
manifold ? Which is the image of an immersion ?

(a) The “cross” S := {(x, y) ∈ R2 | xy = 0}.
Solution. The cross S is not an embedded submanifold, because it is the
union of the lines y = 0 and x = 0, and is therefore not locally Euclidean at
the origin (exercise of series 1).

On the other hand, S is the disjoint union of two embedded submanifolds:
S0 = the horizontal axis, and S1 = the vertical axis minus the origin. Let
M be the 1-manifold obtained as disjoint union of S0 and S1. The inclusion
map of M into R2 is an injective immersion and has S as image. �

(b) The “corner” C := {(x, y) ∈ R2 | xy = 0, x ≥ 0, y ≥ 0}
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Solution. We will show that C is not even an immersed submanifold of R2,
so in particular it cannot be an embedded submanifold.

We proceed by contradiction. Suppose that C is an immersed submani-
fold, i.e. it has a topology τ and smooth structure such that the canonical
inclusion ι : C ↪→ R2 is an immersion. Let (U,ϕ) be a smooth chart s.t.
(0, 0) ∈ U , ϕ(0, 0) = 0 where U ⊂ (C, τ) is open 1. By making the im-
age ϕ(U) smaller if necessary we can suppose that it is an open interval
containing 0, ϕ(U) = J ⊂ R.

Since ι is an immersion, then

f := ι ◦ ϕ−1 : J → R2

is a smooth map with non-zero derivatives everywhere. Here we emphasize
that on J and R2 we have the standard Euclidean topology and smooth
structure. In particular, we find that f ′(0) 6= (0, 0). Hence either f ′1(0) 6= 0
or f ′2(0) 6= 0. If f ′1(0) 6= 0 then for any neighborhood of 0 ∈ J , we can find
points t1, t2 ∈ J s.t. f1(t1) < 0 and f1(t2) > 0. It contradict the fact that
f1 ≥ 0. Similarly we arrive at a contradiction if f ′2(0) 6= 0. �

Exercise 5.3. Let N be a Ck-embedded n-submanifold of some m-manifold M ,
with k ≥ 1. Show that there exists an open set U ⊆M that contains N as a closed
subset.

Solution. Consider a family of charts ϕi : Wi → Vi that cover N and are slice
charts for N , meaning that ϕi(x) ∈ Rn × {0} iff x ∈ N , or equivalently, that
N ∩Wi = ϕ−1i (Rn × {0}). Therefore N ∩Wi is a closed subset of Wi for all i. We
conclude that N is closed in W =

⋃
iWi, which is an open subset of M . �

Exercise 5.4. Let f : M → N be an injective immersion of Ck manifolds. Show
that there exists a closed embedding M → N × R.
Hint: Recall that there exists a proper map g :M → R.

Solution. The map h : M → N×R : x 7→ (f(x), g(x)) is an immersion and is proper,
hence it is a closed embedding.

Proof that h is proper: Let K ⊆ N×R a compact set. Note that K is closed in N
since it’s a compact subset of a Hausdorff space. It follows that h−1(K) is closed. In
addition h−1(K) is contained in the compact set g−1(π1(K)), where π1 : N×R→ R
is the projection. Therefore h−1(K) is compact. This proves that h is proper, hence
closed. Since in addition it is injective, it’s a closed topological embedding.

Proof that h is an immersion: for each nonzero vector v ∈ TpM , the vec-
tor Tp h(v) = (Tp f(v),Tp g(v)) is nonzero because its first component Tp f(v) is
nonzero. �

Exercise 5.5. Let f : R2 → R, f(x, y) = x3 + y3 + 1.

(a) What are the regular values of f? For which c ∈ R is the level set f−1({c})
an embedded submanifold of R2?

Solution. The gradient of f ,

∇f(x, y) = (3x2, 3y2),

vanishes precisely at the origin (x, y) = (0, 0). Thus Tp f : TpR2 → Tf(p)R
has rank 0 if and only if p = (x, y) = (0, 0). Thus every c ∈ R is a regular
value except c = 1.

By the regular preimage theorem, each level set f−1({c}) with c 6= 1 is
a smooth embedded submanifold in R2. As for the level set f−1({1}) we

1Note that in the case of an embedded manifold we could assume that U = V ∩ C for some

V ⊂ R2 open, but here a-priori we do not know the topology τ .
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have to argue differently. The theorem does not say that f−1({1}) is not a
smooth submanifold. We have to study this case separately. Observe that
in this case one has

f−1({1}) = {x3 + y3 = 0} = {x = −y}

i.e., f−1({1}) is a line going through the origin. Thus, also f−1({1}) is a
smooth submanifold of R2. Summing up, all level sets of this function are
smooth submanifolds. �

(b) In the case where S = f−1({c}) is an embedded submanifold, p ∈ S, write
down an equation for the tangent space ι∗(Tp S) ⊂ TpR2 where as usual we
identify TpR2 ∼= R2 (i.e. you are expected to write down the equation for a
line in R2).

Solution. By the regular preimage theorem, if c 6= 1 we have Tp S = Ker Tp f for all
p ∈ S = f−1(c).

Let us compute Tp f . If V = (Vx, Vy) ∈ TpR2 ≡ R2, then Tp f(V ) = 3 p2x Vx +
3 p2y Vy, where p = (px, py). Hence

Ker Tp f = {V ∈ TpR2 : p2x Vx + p2y Vy = 0}.

When c = 1 we notice that S = {x = −y}, thus Tp S = {V ∈ TpR2 : Vx = −Vy}. �

Exercise 5.6. Consider the n-torus Tn = Rn/Zn and let π : Rn → Tn be the
projection map.

(a) Give Tn a natural smooth structure so that π is a local diffeomorphism.

Solution. We have already seen in a previous exercise that π is locally injec-
tive. This means that R2 is covered by open sets U such that the restriction
π|U : U → Tn is injective. We take these maps φ = π|U as local parametriza-
tions of Tn. Their inverses form a smooth atlas for Tn. (The transition maps
are locally translations, hence smooth.) �

(b) Show that a map f : Tn →M (where M is a Ck manifold) is Ck if and only
if the composite f ◦ π is Ck.

Solution. If f is Ck, it is clear that f ◦ π is Ck.
Now suppose f ◦π is Ck. To show that f is Ck, it suffices to show that f ◦φ

is Ck for all parametrizations φ = π|U as above. And indeed, by decomposing
φ = π ◦ ιU , where ιU : U → Rn is the inclusion map, we see that the map
f ◦ φ is Ck because f ◦ φ = f ◦ π ◦ ιU and both f ◦ π and ιU are Ck. �

(c) Show that Tn is diffeomorphic to the product of n copies of the circle S1.
Solution. Recall the homeomorpism T1 = R/Z → S1 ⊆ R2 that sends [t] 7→
(cos(2πt), sin(2πt)). We will construct an n-dimensional version of it.

For this exercise it is convenient to define the torus as Tn := Rn/2πZn.
We define a map f : Rn → (S1)n ⊆ R2n that sends

(ti)0≤i<n 7→ (cos t0, sin t0, cos t1, sin t1, . . . ).

Since the map f is 2πZn-periodic, by the previous part of the exercise it
passes to the quotient giving a smooth map f : Tn → (S1)n that satisfies
f = f ◦ π.

Note that map f is an immersion. To prove this, since π is a surjective, it
suffices to check that the map ι ◦ f = ι ◦ f ◦ π : Rn → R2n is an immersion,
where ι is the inclusion map (S1)n → R2n. To see that ι ◦ f is an immersion
we note that the n vectors

Tp(ι ◦ f)(ei) = (0, . . . , 0,− sin ti, cos ti, 0, . . . , 0)

are linearly independent, since they are nonzero and contained in different
coordinate planes.
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Since f : Tn → (S1)n is an immersion between n-dimensional manifolds,
it follows that f is a local diffeomorphism, and in particular it is an open
map. Since in addition f is bijective, it is a diffeomorphism. �

Exercise 5.7. Show that the map g : T2 → R3 given by

g([s, t]) = ((2 + cos s) cos t, (2 + cos s) sin t, sin s)

is a smooth embedding of the 2-torus in R3.
(In this case the torus is defined as T2 = R2/2πZ2.)

Solution. Let π : R2 → T2 be the quotient map. We define the composite map
f = g ◦ π : R2 → R3. Note that

f(s, t) = ((2 + cos s) cos t, (2 + cos s) sin t, sin s).

Clearly f is smooth, therefore (by the previous exercise) g is smooth.

Let us show that g is an embedding. We first show that f is an immersion. This
follows because for any point p = (s, t), the vectors

Tpf(e0) =
∂f(s, t)

∂s

∣∣∣∣
p

= (− sin(s) cos t,− sin s sin t, cos s)

Tpf(e1) =
∂f(s, t)

∂t

∣∣∣∣
p

= (−(2 + cos s) sin(t), (2 + cos s) sin t, 0)

are linearly independent. Since π is a surjective local diffeomorphism, it follows that
g is an immersion. (Indeed, each point q ∈ T2 is of the form q = π(p), with p ∈ R2.
Differentiating the composite map f = g ◦ π at p we get

Tp f = Tq g ◦ Tp π,

and since Tp f is injective and Tp π is an isomorphism, we conclude that Tq g is
injective as well.)

Finally, g : T2 → R3 is a closed map because its domain is compact and its
codomain is Hausdorff. Since g is injective, we conclude that g is a a topological
embedding. �

Exercise 5.8. Show that the following subgroups of GLn(R) are closed submani-
folds. Compute their dimension and their tangent space at the identity.

(a) The special linear group SLn(R), consisting of matrices with determinant
equal to 1.

Solution. The determinant function det : Mn → R is continuous, which
implies that the preimage of a closed (resp. open) set is a closed (resp.
open) set. We have already used this to show that the general linear group
GLn = det−1(R 6=0) is open in Mn. And now we can use it to show that the

special linear group SLn = det−1(1) is a closed subset of Mn. (And since
SLn is contained in GLn, it is also closed in GLn).

To show that SLn is a submanifold we use the regular preimage theorem.
We apply the theorem to the determinant map det : Mn → R, which is a
smooth map (by a previous exercise).

To apply the theorem we have to show that 1 is a regular value of det.
Thus we have to show that the linear transformation

DA det : TAMn ≡ Rn2 −→ Tdet(A)R ≡ R

is surjective for all points A ∈ SLn. Since the codomain of this linear
transformation has dimension 1, we have two possibilities: either the trans-
formation is surjective (if it has rank 1) or it is null (if it has rank 0). Thus it

4



Introduction to Differentiable Manifolds Solutions Series 5

suffices to show that the transformation DA det is not null. We have already
computed the differential

DA det(X) = det(A) tr(A−1X)

Putting X := A we get

DA det(X) = det(A) tr(In) = n

This implies that DA det is surjective for every A ∈ SLn. Therefore SLn =
det−1(1) is an embedded submanifold of Mn of dimension

dim(SLn) = dim(Mn)− dim(R) = n2 − 1.

Finally, the regular preimage theorem also tells us that the tangent space
of SLn at any point A ∈ SLn is

TA(SLn) = Ker(DA det) = {X ∈Mn | tr(A−1X) = 0}
In particular,

TIn(SLn) = {X ∈Mn | tr(X) = 0}.
�

(b) The orthogonal group On(R), consiting of the orthogonal matrices A (which
satisfy A>A = In).
Hint: Consider the map f :Mn →Msym

n that sends A 7→ A>A, there Msym
n is the vector

space of symmetric n× n matrices.

Solution. Note that f−1(In) = On. To apply the regular preimage theorem
we have to verify that In is a regular value of f . Thus we have to show that
for each point A ∈ On, the linear transformation

DA f : TMn ≡Mn −→ TM sym
n ≡M sym

n

is surjective. Note that

DA f(X) = A>X +X>A

= A>X + (A>X)>.

Let Y ∈M sym
n be an antisymmetric matrix. Let us find some X ∈Mn such

that DA f(X) = Y . We can write Y = 1
2Y + 1

2Y
>, thus it suffices to find X ∈

Mn such that A>X = 1
2Y . We put simply X = (A>)−1 12Y = 1

2AY . This
finishes the proof that In is a regular value of f . Therefore, by the regular
preimage theorem, the set On = f−1(In) is a closed embedded submanifold
of Mn of dimension

dim(On) = dim(Mn)− dim(M sym
n ) = n2 − n(n+ 1)

2
=
n(n− 1)

2
.

Its tangent space at any point A ∈ On is

TAOn = Ker DA f = {X ∈ TMn | A>X +X>A = 0}
In particular, its tangent space at the identity matrix is

TIn(On) = {X ∈Mn | X +X> = 0},
that is, the space of antisymmetric matrices. �
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