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Exercise 5.1. Consider the map
f:R—=R?:t (24 tanht) - (cost,sint).

Show that f is an injective immersion. Is it a smooth embedding?

Solution. First notice that f is an immersion since f’(t) # 0 for every t € R. To see
this observe that

SJ

Hence if f/(t) # 0 then we have Ker f,| , = 10} which is equivalent to f.
for every ¢t € R. Thus it suffices to compute

1
fot) = < h2t> cost — (2 4 tanht)sint

CcOS

‘t injective

and
1
fi@t) = <2> sint — (2 + tanht) cost
cosh”t

To see that f/(t) # 0 notice that

T (

where || - || denotes the euclidean norm. This proves that f is an immersion. Fur-
thermore the function f is an injection since the function r(t) = || f(¢)|| = 2+ tanh ¢
is strictly increasing.

2
+ (2 + tanh t)? > 0
cosh2t> ( nht)

Note that f is an injective immersion. Let us prove that it is a smooth embedding.
Consider the open set U = {x € R? : 1 < ||z|| < 3}. We will show that f|V : R — U
is a proper map (hence a closed map; see e.g. Thm. 4.95 of Lee’s book on topological
manifolds). It follows that f is an embedding, since its the composite f = ¢y o f|V
of a closed embedding f|Y and the inclusion map ¢y : U — M, which is an open
embedding.

To see that f|U is proper we let K C U be a compact set and verify that f~!(K) C
R is compact as well. Since K is closed (because it is a compact subset of a Hausdorff
space) and f is continuous, the preimage f~!(K) is closed. Finally, we have to check
that f~1(K) is bounded. Let a (resp b) be the minimum (resp. maximum) norm
of a point x € X. Note that [a,b] C (1,3). Tt follows that f~(K) C [a/,], where
a’, b are the preimages of a,b by the monotonic map ¢ — 2 + tanh . ]

Exercise 5.2. Consider the following subsets of R2. Which is an embedded sub-
manifold 7 Which is the image of an immersion ?
(a) The “cross” S := {(z,y) € R? | 2y = 0}.
Solution. The cross S is not an embedded submanifold, because it is the
union of the lines y = 0 and z = 0, and is therefore not locally Euclidean at
the origin (exercise of series 1).
On the other hand, S is the disjoint union of two embedded submanifolds:
So = the horizontal axis, and S7; = the vertical axis minus the origin. Let
M be the 1-manifold obtained as disjoint union of Sy and S;. The inclusion
map of M into R? is an injective immersion and has S as image. U

(b) The “corner” C := {(z,y) € R? |zy = 0,2 >0,y > 0}
1
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Solution. We will show that C' is not even an immersed submanifold of R2,
so in particular it cannot be an embedded submanifold.

We proceed by contradiction. Suppose that C' is an immersed submani-
fold, i.e. it has a topology 7 and smooth structure such that the canonical
inclusion ¢ : C' < R? is an immersion. Let (U, ) be a smooth chart s.t.
(0,0) € U, ¢(0,0) = 0 where U C (C,7) is open ﬂ By making the im-
age @(U) smaller if necessary we can suppose that it is an open interval
containing 0, p(U) = J C R.

Since ¢ is an immersion, then

f=10pt:J > R?

is a smooth map with non-zero derivatives everywhere. Here we emphasize
that on J and R? we have the standard Euclidean topology and smooth
structure. In particular, we find that f'(0) # (0,0). Hence either f{(0) # 0
or f5(0) # 0. If f{(0) # 0 then for any neighborhood of 0 € J, we can find
points t1,ts € J s.t. fi(t1) < 0 and fi(t2) > 0. It contradict the fact that
f1 > 0. Similarly we arrive at a contradiction if f}(0) # 0. O

Exercise 5.3. Let N be a C*-embedded n-submanifold of some m-manifold M,
with & > 1. Show that there exists an open set U C M that contains N as a closed
subset.

Solution. Consider a family of charts ¢; : W; — V; that cover N and are slice
charts for N, meaning that @;(x) € R™ x {0} iff x € N, or equivalently, that
NNW; = ¢; {(R" x {0}). Therefore N N W; is a closed subset of W; for all i. We
conclude that N is closed in W = |J, W;, which is an open subset of M. O

Exercise 5.4. Let f : M — N be an injective immersion of C¥ manifolds. Show
that there exists a closed embedding M — N x R.
Hint: Recall that there exists a proper map g : M — R.

Solution. Themap h: M — N xR : 2 — (f(x),g(x)) is an immersion and is proper,
hence it is a closed embedding.

Proof that h is proper: Let K C N xR a compact set. Note that K is closed in N
since it’s a compact subset of a Hausdorff space. It follows that h~!(K) is closed. In
addition h~!(K) is contained in the compact set g~! (71 (K)), where 7 : N xR — R
is the projection. Therefore h=!(K) is compact. This proves that h is proper, hence
closed. Since in addition it is injective, it’s a closed topological embedding.

Proof that h is an immersion: for each nonzero vector v € T, M, the vec-
tor Tp h(v) = (T, f(v), Tpg(v)) is nonzero because its first component T, f(v) is
NONZEro. O

Exercise 5.5. Let f: R? = R, f(z,y) = 2% + 3 + 1.

(a) What are the regular values of f? For which ¢ € R is the level set f~!({c})
an embedded submanifold of R??

Solution. The gradient of f,

Vf(z,y) = (32% 3y%),

vanishes precisely at the origin (z,y) = (0,0). Thus T, f : T,R* = Ty, R
has rank 0 if and only if p = (z,y) = (0,0). Thus every ¢ € R is a regular
value except ¢ = 1.

By the regular preimage theorem, each level set f~1({c}) with ¢ # 1 is
a smooth embedded submanifold in R2. As for the level set f~1({1}) we

INote that in the case of an embedded manifold we could assume that U = V N C for some
V' C R? open, but here a-priori we do not know the topology 7.
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have to argue differently. The theorem does not say that f~!({1}) is not a
smooth submanifold. We have to study this case separately. Observe that
in this case one has

) ={z" +¢° =0} = {z = —y}
i.e., f71({1}) is a line going through the origin. Thus, also f~!({1}) is a
smooth submanifold of R?. Summing up, all level sets of this function are
smooth submanifolds. O
In the case where S = f~!({c}) is an embedded submanifold, p € S, write
down an equation for the tangent space t,(T, S) C T, R? where as usual we

identify T][,]R2 =~ R? (i.e. you are expected to write down the equation for a
line in R?).

Solution. By the regular preimage theorem, if ¢ # 1 we have T}, S = Ker T, f for all
peS=fe).

Let us compute Ty f. If V= (Vs,V,) € T,R? = R?, then T), f(V) = 3p} V; +
3p§ Vy, where p = (pz,py). Hence

KerT, f ={V € T,R*: p. V; +p, V, = 0}

When ¢ = 1 we notice that S = {x = —y}, thus T, S = {V € T,R? : V, = -V,}. O

Exercise 5.6. Consider the n-torus T" = R"/Z" and let 7 : R® — T" be the
projection map.

(a)

Give T" a natural smooth structure so that 7 is a local diffeomorphism.

Solution. We have already seen in a previous exercise that 7 is locally injec-
tive. This means that R? is covered by open sets U such that the restriction
7|y : U — T™ is injective. We take these maps ¢ = 7|y as local parametriza-
tions of T™. Their inverses form a smooth atlas for T™. (The transition maps
are locally translations, hence smooth.) O

Show that a map f: T" — M (where M is a C¥ manifold) is C* if and only
if the composite f on is C¥.
Solution. If f is C*, it is clear that f o7 is C*.

Now suppose fo is C¥. To show that f is C*, it suffices to show that fo¢
is C* for all parametrizations ¢ = 7|y as above. And indeed, by decomposing
¢ = woy, where vy : U — R" is the inclusion map, we see that the map
fo¢isCFbecause fo¢ = fomouy and both f o and iy are CF. ]
Show that T" is diffeomorphic to the product of n copies of the circle S!.

Solution. Recall the homeomorpism T! = R/Z — S! C R? that sends [t]
(cos(27t), sin(27t)). We will construct an n-dimensional version of it.

For this exercise it is convenient to define the torus as T" := R"/27Z".
We define a map f : R® — (S!)® C R?" that sends

(t)o<i<n + (cost?,sint"; cos th sint!,...).

Since the map f is 2nZ"-periodic, by the previous part of the exercise it
passes to the quotient giving a smooth map f : T® — (S!)” that satisfies
f=Ffom

Note that map f is an immersion. To prove this, since 7 is a surjective, it
suffices to check that the map to f =to fonm: R® — R?" is an immersion,
where ¢ is the inclusion map (S!)” — R?™. To see that ¢o f is an immersion
we note that the n vectors

Ty(to f)(e;) = (0,...,0,—sint’,cost’,0,...,0)

are linearly independent, since they are nonzero and contained in different
coordinate planes.
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Since f : T® — (S')" is an immersion between n-dimensional manifolds,
it follows that f is a local diffeomorphism, and in particular it is an open
map. Since in addition f is bijective, it is a diffeomorphism. O

Exercise 5.7. Show that the map g : T?> — R? given by
9([s,t]) = ((2 4 cos s) cost, (2 + cos s) sint, sin s)

is a smooth embedding of the 2-torus in R3.
(In this case the torus is defined as T? = R?/27Z2.)

Solution. Let m : R?> — T2 be the quotient map. We define the composite map
f=gom:R? = R3. Note that
f(s,t) = ((24 cos s) cost, (2 + cos s)sint,sin s).

Clearly f is smooth, therefore (by the previous exercise) g is smooth.

Let us show that g is an embedding. We first show that f is an immersion. This
follows because for any point p = (s,t), the vectors

Tpf(eo) = (‘?!fés!;t) = (—sin(s) cost, —sin ssint, cos s)
P

Tpf(e1) = afgi’ 2 = (—(2+ cos s)sin(t), (2 + cos s) sint, 0)
P

are linearly independent. Since 7 is a surjective local diffeomorphism, it follows that
g is an immersion. (Indeed, each point ¢ € T? is of the form ¢ = 7(p), with p € R2.
Differentiating the composite map f = g o7 at p we get

T,f=T4g0T,m,

and since T), f is injective and T)p 7 is an isomorphism, we conclude that T, g is
injective as well.)

Finally, g : T2 — R3 is a closed map because its domain is compact and its
codomain is Hausdorff. Since g is injective, we conclude that g is a a topological
embedding. O

Exercise 5.8. Show that the following subgroups of GL,(R) are closed submani-
folds. Compute their dimension and their tangent space at the identity.

(a) The special linear group SLy(R), consisting of matrices with determinant
equal to 1.

Solution. The determinant function det : M, — R is continuous, which
implies that the preimage of a closed (resp. open) set is a closed (resp.
open) set. We have already used this to show that the general linear group
GL,, = det™!(R) is open in M,. And now we can use it to show that the
special linear group SL, = det™ (1) is a closed subset of M,. (And since
SL, is contained in GL,, it is also closed in GLy,).

To show that SL,, is a submanifold we use the regular preimage theorem.
We apply the theorem to the determinant map det : M,, — R, which is a
smooth map (by a previous exercise).

To apply the theorem we have to show that 1 is a regular value of det.
Thus we have to show that the linear transformation

Dadet : Ta M, =R™ — Ty R=R

is surjective for all points A € SL,. Since the codomain of this linear
transformation has dimension 1, we have two possibilities: either the trans-

formation is surjective (if it has rank 1) or it is null (if it has rank 0). Thus it
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suffices to show that the transformation D 4 det is not null. We have already
computed the differential
D det(X) = det(A) tr(A71X)
Putting X := A we get
Dydet(X) = det(A) tr(I,) =n
This implies that D4 det is surjective for every A € SL,. Therefore SL, =
det™1(1) is an embedded submanifold of M,, of dimension
dim(SL,) = dim(M,) — dim(R) = n? — 1.
Finally, the regular preimage theorem also tells us that the tangent space
of SL, at any point A € SL, is
TA(SL,) = Ker(Dadet) = {X € M, | tr(A7'X) =0}
In particular,
T, (SL,) = {X € M, | tr(X) = 0}.
O

The orthogonal group O, (R), consiting of the orthogonal matrices A (which
satisfy ATA = 1I,,).

Hint: Consider the map f : M, — M32Y™ that sends A — AT A, there M5¥™ is the vector
space of symmetric n X n matrices.

Solution. Note that f~1(I,) = O,. To apply the regular preimage theorem
we have to verify that I, is a regular value of f. Thus we have to show that
for each point A € O,, the linear transformation

Daf:TM, =M, — TMY" =M™
is surjective. Note that
DAaf(X)=ATX+X"A
=ATX +(ATX)".
Let Y € M;’™ be an antisymmetric matrix. Let us find some X € M,, such
that D4 f(X) =Y. We can write Y = Y+ 1Y T, thus it suffices to find X €
M, such that ATX = 1Y. We put simply X = (AT)"13Y = 1AY. This
finishes the proof that I,, is a regular value of f. Therefore, by the regular

preimage theorem, the set O,, = f~1(I,) is a closed embedded submanifold
of M,, of dimension

dim(0,) = dim(M,,) — dim(M2¥™) = n2 _ n(n2—|— 1) _ n(nQ— 1).

Its tangent space at any point A € O,, is
TsO,=KearDaf={XecTM,|ATX +X"TA=0}
In particular, its tangent space at the identity matrix is
Tr(0y) ={X €M, | X+X" =0},

that is, the space of antisymmetric matrices. O



