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Introduction

End result
The goal of this homework is to agree on filenames to metahash associations. To this
extent, peers will run several instances of consensus, with each instance agreeing on an
association.

You are going to revisit and improve the Tag() function from the data sharing module you
implemented in the previous homework. You will ensure that once a file (i.e metahash) has
been named in the system, all peers see it under the same name, effectively ensuring that
all name stores are consistent and synchronized across all peers in the system. This
functionality will be implemented by building a very simple blockchain.

The Tag() function will allow a peer to associate a name to a metahash across the whole
Peerster system. Once a file is tagged by a peer, a Paxos consensus instance will be
initiated to propagate the association to all peers and resolve any conflict if several peers
concurrently propose other name/metahash associations. An instance of the Paxos
consensus will associate a single metahash to a file name, so a multi-Paxos implementation
will actually be needed to support a series of consensus instances covering multiple
metahashes. As a performance optimization, Threshold Logical Clocks (TLC) will be used to
speed up the propagation of consensus decisions. Finally, each agreed upon
name/metahash association will be stored in a block, and the blocks will be chained as part
of a blockchain.

In the rest of this document we refer to “value” as the name/metahash association. As you
will discover later, this value is defined by a type.

A typical workflow will be:

1. Tag an uploaded file with a filename N that maps to a metahash M.
2. The Paxos consensus protocol runs to agree on (N,M) mapping and the peers agree

on a single mapping.
3. A new block is created and the Threshold Logical Clock moves forward.
4. The block is added to the blockchain, and the name store is updated.



Objectives
Improve the Tag() function from the datasharing module of homework 2.

Paxos
As part of this homework, you will have to be intimately familiar with the Paxos algorithm,
whose description goes beyond what can be pragmatically described in a handout. Before
starting this assignment, we encourage you to carefully read the following paper, which is a
compulsory course reading, to have an idea about the Paxos algorithm:

Paxos Made Simple https://lamport.azurewebsites.net/pubs/paxos-simple.pdf

In order to ensure consistency, the implementation is going to use the same terms and
protocol as described on the following webpage:

Understanding Paxos https://people.cs.rutgers.edu/~pxk/417/notes/paxos.html

Paxos in Practice
To integrate Paxos within the Peerster system, you need to adhere to the following
specifications:

1. Paxos requires proposal numbers (IDs) to be globally unique. For that purpose each1

Peer is provided with a unique ID, along with the total number of peers N in the
system.

a. The starting ID of each Paxos proposal will be the proposing peer's unique
ID. This unique ID is distributed among peers from 1 to N (1 for the first peer,
2 for the second peer, etc…) using a configuration parameter.

b. If a peer needs to make a new proposal with a higher ID, it increments its
previously used ID by the total number of peers N. As such, the starting ID of
the first peer will be 1, and its next IDs will be 1+N, 1+2*N, and so on.

c. Note that IDs are scoped to a Paxos consensus instance.
2. The Paxos PROMISE message will be broadcasted in a private message. All the

other messages (PREPARE, PROPOSE, ACCEPT) will be directly broadcasted.
3. When we mention the broadcast, we refer to the broadcast function you

implemented in HW1.
4. Effectively all peers act as acceptors and learners, and can be proposers.

1 Throughout this document we use the term ID to denote the concept of Ballot in the
original Paxos paper. We follow the terms from the website Understanding Paxos.

https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://web.archive.org/web/20211025122352/https://people.cs.rutgers.edu/~pxk/417/notes/paxos.html
https://web.archive.org/web/20211025122352/https://people.cs.rutgers.edu/~pxk/417/notes/paxos.html


Multi-Paxos
An important aspect of this homework is that you will deal with repeated uses of Paxos, as
you will use Paxos to agree on multiple values. In the following explanation, we refer to each
of the repeated executions of the Paxos protocol as an “instance” of Paxos. We also see
multi-paxos as a sequence of steps, where each step is the execution of a paxos instance.
Step 0 refers to the first Paxos instance. The usage of multiple consecutive Paxos instances
is typically called multi-Paxos and carries its own set of challenges.

In particular, every peer in the system, upon receiving a Paxos message, needs to be able
to understand if the message belongs to a past, present, or as-of-yet-unknown instance of
Paxos. This allows the node to know when the message can be discarded and when it
needs to be processed. It is specifically expected that proposer and acceptor peers would
drop messages unrelated to the current multi-paxos step

Threshold Logical Clocks (TLC)
To advance sequentially from one Paxos instance to another, as fast as a quorum of peers
allows it and robustly, we can make use of Threshold Logical Clocks (TLC). As you’ve seen
in the lecture, TLC is a design pattern for threshold communication, and the formulation in
this homework is just one of many ways to run multi-paxos. TLC is a primitive which
enables an asynchronous and distributed system to have a seemingly synchronous
behavior as seen from the layers above it. It does so by making use of a virtual and logical
clock derived from the underlying messaging among various peers.

The logical clock of a peer advances when the logical clock of a quorum of other peers is
ready to advance. The TLC logic is thus pretty simple: the clock is either waiting to reach a
threshold of TLC messages to advance, or advancing to the next step . It does so for all2 3

steps.

It is thus important to keep track of all the TLC messages received for both the current
clock value and future clock values, so that the clock can move forward as soon as a
threshold is reached. Conversely, TLC messages referencing past clock values can be
dismissed, as they will not affect the logical clock.

In our case, a peer broadcasts a TLC message in two cases:

1. When a consensus is reached at the Paxos layer, or
2. When a peer receives a quorum of TLC messages for the current clock. Note that

the peer must broadcast a TLC message only once per clock.

3 Step and Clock are the same concept in this document: when a peer moves to the next step, it
indeed moves its clock.

2 Quorum and Threshold refers to the same concept in this document: a quorum of peers is the same
as a threshold of peers.



The logical clock effectively represents the multi-paxos step number: when TLC moves to
the next clock, a new paxos instance takes place which makes them both move at the
same pace synchronously. TLC should be responsible for moving multi-paxos to the next
instance, while the paxos instance is responsible for producing the accept messages that
TLC uses to know when a consensus has been reached. Figure 1 illustrates how the logical
clock goes to the next step and the relation it has with multi-paxos. In this figure, each
paxos instance corresponds to a TLC step.

Since the communication is based on rumors, we can be sure that all peers, even those
joining late, will eventually receive all messages. This makes it possible for “late joiners” to
quickly catch up the state of the application by going through TLC messages, without
having to process the Paxos messages themselves or be involved in the consensus.

Figure 1: Timing diagram illustrating how the logical clock evolves with multi-paxos, paxos, and the
messages exchanged, on a specific peer. Each clock step corresponds to a Paxos instance. In the
first step consensus with paxos is reached. In the second step, no proposal has been made but a

quorum (threshold) of TLC messages has been received. In all cases the multi-paxos and TLC goes to
the next step once a quorum of TLC messages has been received.

In summary: Multi-paxos goes to the next step once the peer’s logical clock (TLC) advances
to the next step. A peer moves to the next logical clock once it receives a quorum of TLC
messages for the current step. A peer broadcasts a TLC message for the current step once
its paxos instance reaches consensus on a value, or receives enough TLC messages for the
current step.

Blockchain
Each clock step corresponds to a Paxos consensus on a value. The history of clock steps,
along with their respecting values, is saved on a cryptographically linked-list: a blockchain. A



blockchain is a list of blocks cryptographically linked together to form a singly linked list. In
our case, each block represents a clock step and contains the step number, the hash of the
previous block (this is the cryptographic link), the value corresponding to the paxos
consensus value, and the block’s hash. Since the step number starts from 0 and increments
at each step, the step number saved in a block can be seen as the block's index: the first
block corresponds to the consensus for step 0, the second block for step 1, etc…

Each time a peer advances its logical clock it must create the corresponding block and store
it using a provided blockchain store. Using a blockchain has the advantage of providing an
immutable and easy to verify representation of the state held in blocks. In this case the
history of consensus values that peers have agreed on. Since each block is linked to the
previous one via its hash, changing the content of a block would invalidate all subsequent
blocks, because the block’s hash would be different. Therefore, only the hashes of the last
blocks are needed to compare the content of, say, two blockchains from two different peers.



Your tasks
In the following tasks you are progressively going to extend the Peerster implementation by
adding a Paxos acceptor and a Paxos proposer. Then, you will support a full Paxos
consensus to name metahashes within the Peerster system, and finally you will implement a
multi-Paxos extension, storing the name/metahash associations in a blockchain.

In summary, here is what needs to be done:

0: Think about and define your code's architecture
1: Implement Paxos acceptor
2: Implement Paxos proposer and adapt the Tag function
3: Implement multi-Paxos with TLC

Before you begin: New messages introduced
Before going into the technical details, here we introduce you to the new types of message
Peerster is going to use. Those messages are defined in types/consensus_def.go.

PaxosPrepareMessage
This message is used by a peer as part of the Paxos protocol (phase 1), in a proposer role,
to send a PREPARE message to an acceptor. It contains a Source field corresponding to
the address of the proposer’s peer, and an ID corresponding to the proposal ID.
Furthermore, it contains a Step value representing the current TLC step identifier (equal to
the Paxos instance number), so that messages can be attributed to a given instance of
Paxos.

PaxosPromiseMessage
This message is used by a peer as part of the Paxos protocol (phase 1), in an acceptor role,
to send a PROMISE message to the proposer, in response to a PaxosPrepareMessage. It
contains a Step and an ID field corresponding to the PaxosPrepareMessage it is
responding to. Furthermore, if the acceptor has already accepted a value (in Paxos phase
2), the message's AcceptedId and AcceptedValue fields will contain the accepted value
and corresponding ID.

PaxosProposeMessage
This message is used by a peer as part of the Paxos protocol (phase 2), in a proposer role,
to send a PROPOSE message to an acceptor. On top of a Step and ID fields, it contains a
Value field corresponding to the proposed value for the Paxos consensus.



A PaxosValue is the structure representing the proposed value. It contains an identifier
UniqID that uniquely identifies the proposal, as well as a Filename and Metahash fields
corresponding to the proposed association.
The UniqID must be generated with xid.New().String().

PaxosAcceptMessage
This message is used by a peer as part of the Paxos protocol (phase 2), in an acceptor role,
to broadcast an ACCEPT message, in response to an acceptable PaxosProposeMessage. It
contains the same fields as the PaxosProposeMessage.

TLCMessage
This message is used by a peer to signal that the Threshold Logical Clock is ready to be
moved forward and share the corresponding blockchain block (Block). The block is
encoded as a structure of type BlockchainBlock.

Recall that a TLC message is sent by a node when it receives a threshold of ACCEPT
message for the same value (i.e. a consensus is reached at the Paxos layer) OR when it
receives a threshold of TLC message for the current step.

A BlockchainBlock is a block on the blockchain. It is characterized by its position (Index)
in the blockchain, a hash of the previous block (PrevHash), the Value it contains (namely
the PaxosValue), and its Hash, computed over its index, value, and the hash of the previous
block. Use crypto/sha256 to compute the hash.

Task 0: Think about and define your code's architecture
In this homework, and unlike the preceding ones, you will not have to implement multiple
independent functionalities. Instead, you will exclusively rework the Tag functionality from
HW2. You will modify it in-depth by implementing a combination of protocols and storage
that are built on top of each other. The objective is to ensure that the Tag function has an
effect on the overall Peerster system, as opposed to being local to one peer.

As such, it is important that you take some time to understand what those protocols require
(Paxos and TLC), how they work together and how you can design your code so as to
implement them incrementally, without having to rewrite all your code from one task to the
next. Also make sure to read the resources about Paxos mentioned. Make sure you
understand the different layers we introduced and how they interact: blockchain, TLC,
multi-paxos, Paxos (instance).

Paxos is a consensus protocol that allows the peers to agree on a single value. It does this
task well, but it is not designed for agreeing on multiple values, moving the system forward,
or storing the result of such a consensus.

Multi-Paxos is the extension of the consensus protocol to support multiple instances of
Paxos. As such it builds upon Paxos. In our case, we are going to implement it with TLC,



effectively ensuring that each Paxos instance happens in a distinct logical clock step and
that the result of the consensus is propagated as soon as a Paxos consensus is reached.

On top of providing a multi-Paxos implementation, the TLC messaging also contains the
block (to be added to the blockchain) that was generated in the current TLC step. The
blockchain itself is nothing more than the collection of the blocks received at each TLC
step.

Figure 2 illustrates the relationship between the aforementioned elements. Note that it only
illustrates a possible way of organizing components and you are free to come up with other
solutions. In fact, everything acts as a black box in the testing environment, where the only
input is the Tag function, and the outputs are the blockchain and name stores.

Figure 2: A possible relationship between internal architectural components for HW3. For the testing
environment the system is a black box, with the Tag function as input, and the blockchain and name

stores as outputs.

Task 1: Implement Paxos acceptor
As a first step in this homework, we suggest you start by implementing a working Paxos
acceptor that can support one instance of Paxos. At this step, there's no expectation that
your acceptor will be called in more than one instance of consensus. You can thus assume
that the Step field in Paxos messages will always be 0-valued.

Obviously, you might also want to think ahead and implement the rough design you
identified in Task 0 to minimize the amount of code you will have to rewrite later on.

A working Paxos acceptor implementation must be able to respond to both
PaxosPrepareMessage and PaxosProposeMessage.

Upon receiving a PaxosPrepareMessage, the peer has to:

1. Ignore messages whose Step field do not match your current logical clock (which
starts at 0)



2. Ignore messages whose ID is not greater than MaxID, the previously highest ID you
have observed within this logical clock step. MaxID starts at 0 and you can assume
that a proposer will always use an ID greater than 0.

3. Respond with a PaxosPromiseMessage matching the PaxosPrepareMessage,
including if applicable the value that you have already accepted within this Paxos
instance, c.f. the fields AcceptedValue, AcceptedID. The response must be a
broadcast of a private message to the Source from the PaxosPrepareMessage
message.

Upon receiving a PaxosProposeMessage, the peer has to:

1. Ignore messages whose Step field do not match your current logical clock
2. Ignore messages whose ID isn't equal to the highest you have observed within this

step (MaxID)
3. Broadcast a PaxosAcceptMessage matching the PaxosProposeMessage.

These rules will ensure that the peer can function effectively as a Paxos acceptor, thereby
passing the Test_HW3_Paxos_Acceptor_ tests.

Task 2: Implement Paxos proposer and adapt Tag
Your peer can now work as a Paxos acceptor, it is thus time to extend its functionality to be
a working Paxos proposer. The consensus has to be initiated by a Paxos proposer, which is
started when calling the Tag function. You can extend the function to do just that, while
leaving the rest of its implementation as-is for now. We will come back to Tag once the
consensus is fully implemented and working (Task 3).

Paxos phase 1
In the first phase of the Paxos protocol, the peer, acting as a proposer, needs to broadcast
a PaxosPrepareMessage, collect the promises, and initiate phase 2 based on the responses
it obtained.

When sending the PaxosPrepareMessage, you should use a Step value of 0 as part of this
task, as we don’t yet assume any support for multi-Paxos. The Source field should match
the peer’s address and the ID value should be the PaxosID provided in the configuration.

In response, the acceptors send PaxosPromiseMessage’s. Upon receiving them, the peer
has to:

1. Ignore messages whose Step field does not match your current logical clock.
2. Ignore messages if the proposer is not in Paxos phase 1.
3. Collect the PaxosPromiseMessage's until a threshold of peers replies. The threshold

function is provided in the configuration. It takes in input the total number of peers,
which is also provided in the configuration, and returns the minimum number of



peers to reach a threshold. Use that function here and elsewhere to compute the
threshold.

4. Retry with the next ID if after the provided PaxosProposerRetry timeout there are
not enough promises collected. Recall that the next ID is the current ID plus the total
number of peers.

Once a threshold of peers replies with a PaxosPromiseMessage message, the peer, acting
as a proposer, initiates phase 2.

Paxos phase 2
The proposer initiates phase 2 of the Paxos protocol by broadcasting a
PaxosProposeMessage containing:

- the peer's proposed value (metahash/filename association contained in a
PaxosValue), if no PaxosPromiseMessage contained an AcceptedValue, or

- the AcceptedValue from the PaxosPromiseMessage with the highest AcceptedID

In response, the acceptors broadcast a PaxosAcceptMessage. Upon receiving them, the
peer has to:

1. Ignore messages whose Step field do not match the peer’s current logical clock
2. Ignore messages if the proposer is not in Paxos phase 2
3. Collect the PaxosAcceptMessage until it has a threshold of the same value (use

UniqID to group values).
4. Retry from phase 1 with the next ID if after the provided PaxosProposerRetry

timeout there is not a threshold number of promises with the same values collected.

Once the threshold has been reached, we know that we have reached a consensus. The
Paxos instance can be considered finished and, in a multi-Paxos implementation, we would
be ready to advance to the next Paxos instance. You should be able to run the
Test_HW3_Paxos_Proposer_ tests. We are ready to move to Task 3 !

Task 3: Implement Multi-Paxos with TLC
Your peer can now work as a Paxos acceptor and proposer, the Peerster system can reach
a single consensus and we are ready to update the Tag function that was developed in
HW2. At the end of this task, all tests should pass.

TLC
As the Paxos functionality is ready, you can now extend it to a full multi-Paxos
implementation based on TLC. In concrete terms, this means that when a peer observes
that the consensus has been reached, it will broadcast a TLCMessage and wait for a
threshold of TLCMessage to advance their TLC step. Recall that a peer knows a consensus
has been reached for the current step once it observes a threshold of PaxosAcceptMessage
for the same value that references the current step in their Step field.



When the consensus is observed, you must build the blockchain block that corresponds to
the step before broadcasting the TLCMessage. The block’s Index is the current step
number. The block Value can be taken from one of the PaxosAcceptMessage. The previous
hash (Prevhash) is the hash of the previous block (use the blockchain store to get it). In
case this is the first block it must be a slice of 32 zero-bytes. Finally, you must compute the
Hash of the block as follow:

H = sha256(Index || v.UniqID || v.Filename || v.Metahash || Prevhash)

The Index must be converted using strconv.Itoa and strings can be transformed with
[]byte(<string>). “v” represents the PaxosValue. Use crypto/sha256 to compute the
hash.

Once the block has been computed, the peer can broadcast its TLCMessage containing the
block and current step.

When receiving a threshold of TLCMessage’s for its current step, the peer should:

1. Add the block to its own blockchain (see next section)
2. Set the name/metahash association in the name store
3. In case the peer hasn’t broadcasted a TLCMessage before: broadcast the

TLCMessage
4. Increase by 1 its internal TLC step
5. Catchup up if necessary: Loop to point 1 in case it has already collected enough

TLC messages for the new step, BUT skip the point 3. A peer doesn't need to
broadcast its TLC message when it does a catchup

As stated earlier, TLCMessage’s concerning past steps can be ignored, whereas those
concerning future steps should be stored for further processing.

Blockchain
To store the blocks, we require you to use a storage.Store. Use GetBlockchainStore()
from the Storage in the configuration. We ask that you store every block indexed by its
hex-encoded hash value. As the store only handles bytes, you need to marshal/unmarshal
blocks. For that you must use the blockchain.Marshal and blockchain.Unmarshal
functions. Listing 1 illustrates how to use those functions.

// Marshal
buf, err = block.Marshal()
if err != nil {...}

// Unmarshal
var block types.BlockchainBlock
err := block.Unmarshal(buf)
if err != nil {...}



Listing 1: Example of Marshal / Unmarshal for a blockchain block

Additionally, the last block’s hash (not hex encoded) must be stored with the key
storage.LastBlockKey. Update that key’s content each time a new block is added. This
makes it possible to navigate through the blockchain by accessing its last block, which
contains the hash of the previous block, which indexes the previous block, and so on
recursively.

Finally, update the Tag function
The Tag function must use the consensus mechanism when the TotalPeers parameter
from the config is greater than 1. If that’s the case, the Tag function must return an error if
the name already exists in the name store. Otherwise, it must return only once the value has
been accepted by the consensus, i.e. a block has been added with the proposed value on a
quorum of peers. Figure 3 illustrates the activity when the Tag function is called. Note that it
does not illustrate the TLC and blockchain parts.

Only the name must be unique: once a name is used it can’t be used anymore. But a
metahash can have multiple names associated with it.

Figure 3: Activity diagram when the Tag function is called and TotalPeers is greater than 1. It does not
illustrate the TLC and blockchain part, which would happen when the activity terminates (“everything

went well”). TLC  is what would terminate the “Wait for Paxos instance to be done” job. A paxos
instance is done once the TLC clock moves to the next step.



Try your program
As in HW2 and apart from the unit tests and integration tests, you can use the web GUI to
try your program. Use the --totalpeers and --paxosid CLI arguments to make use of the
consensus on the Tag functionality. When a tag is performed on a peer you should
eventually be able to resolve the name on another peer.

You can visualize a peer’s blockchain by visiting the /blockchain endpoint when a peer is
running via the CLI. You should see something as illustrated with figure 4.

Figure 4: Illustration of the page showing the blockchain of a peer. This page is accessible via the
http://<peer proxy address>/blockchain URL when a Peer is running. Note that you must

reload the page to see changes.



Appendix A - Tests definitions
Note to authors: Do not directly modify the test definitions without updating the implementation. Leave a comment if needed.

Tag with no consensus

Pre-condition Action Expectation

(3-1)
P1 started with TotalPeers set to 1
P2 started and TotalPeers set to 0

Call Tag on P1

Call Tag on P2
P1 send no message

P2 send no message

Paxos acceptor prepare

Pre-condition Action Expectation

(3-2)
A peer “Acceptor” running
Socket “Proposer” running
The Acceptor knows the Proposer

Proposer sends a Paxos prepare to the
Acceptor with step=99 and ID=1

The acceptor ignored the message (wrong
step): no messages sent, block store is
empty, name store is empty.

(3-3)
A peer “Acceptor” running
Socket “Proposer” running
The Acceptor knows the Proposer

Proposer sends a Paxos prepare to the
Acceptor with step=0 and ID=0

The acceptor ignored the message because
the ID is too low: no messages sent, block
store is empty, name store is empty.
(The ID of a proposer is always >0)



(3-4)
A peer “Acceptor” running
Socket “Proposer” running
The Acceptor knows the Proposer

Proposer sends a Paxos prepare to the
Acceptor with step=0 and ID=99

The acceptor sends back the corresponding
promise.

Paxos acceptor propose

Pre-condition Action Expectation

(3-5)
A peer “Acceptor” running
Socket “Proposer” running
The Acceptor knows the Proposer

Proposer sends a Paxos propose to the
Acceptor with step=99 and ID=1

The acceptor ignored the message (wrong
step): no messages sent, block store is
empty, name store is empty.

(3-6)
A peer “Acceptor” running
Socket “Proposer” running
The Acceptor knows the Proposer

Proposer sends a Paxos propose to the
Acceptor with step=0 and ID=2

The acceptor ignored the message (wrong
ID, 0 is expected): no messages sent, block
store is empty, name store is empty.
MaxID = 0

(3-7)
A peer “Acceptor” running
Socket “Proposer” running
The Acceptor knows the Proposer

Proposer sends a Paxos prepare to the
Acceptor with step=0 and ID=5

Proposer sends a Paxos propose to the
Acceptor with step=0, ID=5 and Value=V

Proposer sends a Paxos prepare to the
Acceptor with step=0 and ID=9

The acceptor sent back a private paxos
promise to the proposer that contains
AcceptedValue=V and AcceptedID=5



(3-8)
A peer “Acceptor” running with a threshold
of 1.
Socket “Proposer” running
The Acceptor knows the Proposer

Proposer sends a Paxos propose to the
Acceptor with step=0 and ID=0.

The acceptor broadcast an Accept in a
rumor.

Paxos proposer

Pre-condition Action Expectation

(3-9)
A peer “Proposer” running provided with
PaxosID P
Socket “Acceptor” running
The Proposer knows the Acceptor

Call Tag() on the proposer in a go routine.

The acceptor send back a promise with
Step=99 and the ID=P.

The acceptor receives a prepare.
The proposer sent two messages: the
prepare broadcast, and the promise from
itself to itself.

The proposer ignores the promise from the
Acceptor: still sent only 2 messages in total,
block store is empty, name store is empty.

(3-10)
A peer “Proposer” running with a threshold
of 2 and PaxosID P
Socket “Acceptor” running
The Proposer knows the Acceptor

Call Tag() on the proposer in a go routine.

The acceptor sends back a correct promise
with Step=0 and ID=P.

The acceptor receives a prepare.

The proposer broadcasts a corresponding
correct propose message.



TLC

Pre-condition Action Expectation

(3-11)
P1 running with a threshold of 2.
Socket P2 running
P1 knows P2

P2 sends a correct TLC message to P1 with
Step=0.
P2 sends a TLC message to P1 with Step=1.

P1 has nothing in its block store (it didn’t
advance its TLC clock) (only received 1 TLC
message for step 0)

(3-12)
P1 running with a threshold of 2.
Socket P2 running
P1 knows P2

P2 sends 2 TLC messages to P1 with
Step=0.

P1 has one block in its block store.
P1 has the block’s hash in the LastBlockKey
block store.
P1 has the corresponding name=>metahash
in its name store.

(3-13)
P1 running with a threshold of 1.
Socket P2 running
P1 knows P2

P2 sends a TLC message to P1 with Step=2.
P2 sends a TLC message to P1 with Step=1.

P2 sends a TLC message to P1 with Step=0.
P1 has no blocks in its block store.

P1 has 3 blocks in its block store with the
correct blocks.
P1 has the last block’s hash in the
LastBlockKey block store.

Simple full scenario

Pre-condition Action Expectation



(3-14)
The following topology:
P1 -> P2

Call Tag() on P1 P1 sends the following rumors, in order:

- Rumor(1):PaxosPrepare
- Rumor(2):Private:PaxosPromise
- Rumor(3):PaxosPropose
- Rumor(4):PaxosAccept
- Rumor(5):TLC

P2 sends the following rumors, in order:

- Rumor(1):Private:PaxosPromise
- Rumor(2):PaxosAccept
- Rumor(3):TLC

P1 and P2 have the corresponding
name=>metahash in their name stores

P1 and P2 have the correct block and last
block hash in their block store.

Tag

Pre-condition Action Expectation

(3-15)
The following topology:
P1 <-> P2

The threshold is set to 3.
The Paxos retry is set to 4 seconds.

Call Tag() on P1 in a go routine
Wait 6 seconds The Tag() call must be blocking (no

consensus reached)
P1 retries once and sends the following
rumors, in order:



- Rumor(1):PaxosPrepare
- Rumor(2):Private:PaxosPromise (from P1 to
P1)
- Rumor(3):PaxosPrepare (second attempt)
- Rumor(4):Private:PaxosPromise (from P1 to
P1)

(3-16)
The following topology:
P1 <-> P2

The threshold is set to 3.
The Paxos retry is set to 2 seconds.
Anti-entropy is set to 1 second.

Call Tag() on P1 in a go routine
Wait 3 seconds

Add P3 with Heartbeat of 1 hour.
P3 knows P1.
Wait 10 seconds

The Tag() call must be blocking (no
consensus reached)

A consensus is reached. Name stores in P1,
P2, P3 contain the corresponding
name=>metahash

P1, P2, P3  broadcast a TLC message.

(3-17)
P1, not started.
Name store or P1 contains the association
N=>M

Call Tag() on P1 for N=>M Tag() returns an error.

(3-18)
The following topology, with the default
threshold.
P1 <-> P2

Call Tag() on P1 T times

Add P3. P3 knows P2
P3 broadcast an empty message

P1 and P2 have T blocks in their block
stores and T name=>metahash associations
in their name store.



P3 has T blocks in its block store and T
name=>metahash associations in its name
store.

Blockchains in P1, P2, P3 are valid.
Last blocks of P1, P2, P3 have the same
hash.

(3-19)
K peers running and all knowing each other. Make every K peer call Tag() asynchronously

T times.

Wait on all peer to be done calling Tag()
All peers have a valid blockchain with K*T
blocks and the same LastBlockKey
All peers have K*T elements in their name
store.

Integration test
Same as (3-19) but with a mix of reference and student peers.


