Introduction to Differentiable Manifolds	
$\mathrm{EPFL}-\mathrm{Fall}\ 2021$	M. Cossarini, B. Santos Correia
Exercise Series 8 - Vector fields and flows	2021 – 11 – 16

Exercise 8.1. Compute the flows of the following vector fields.

- (a) On the plane \mathbb{R}^2 , the "angular" vector field $X = x \frac{\partial}{\partial y} y \frac{\partial}{\partial x}$. (b) A constant vector field X on the torus \mathbb{T}^n .

Exercise 8.2. Let X be a \mathcal{C}^k tangent vector field on a manifold M, with $k \ge 1$.

- (a) For a point $p \in M$ and numbers $s, t \in \mathbb{R}$, show that the equation $\Phi_X^{(s+t)}(p) = \Phi_X^t(\Phi_X^s(p))$ holds if the right-hand side is defined.
- (b) We say that X is **complete** if $\Phi_X^t(p)$ is defined for all $t \in \mathbb{R}$. Show that X is complete if its support is a compact set. In particular, on a compact manifold, every vector field is complete.
- (c) If X is complete, show that the map Φ_X^t is a diffeomorphism $M \to M$.

Exercise 8.3. If X is a complete \mathcal{C}^k vector field with $(k \ge 1)$ and $h \in \mathcal{C}^{k+1}(M, \mathbb{R})$.

- (a) Show that the function $X(h): M \to \mathbb{R}$ that sends $p \mapsto X_p(h)$ is \mathcal{C}^k .
- (b) Show that $X(h) = \frac{\partial}{\partial t}\Big|_{t=0} h_t$, where $h_t = (\Phi_X^t)^*(h) = h \circ \Phi_X^t$. Also show that $X(h_t) = (\Phi_X^t)^*(X(h))$.

Exercise 8.4. Let $f : M \to N$ be a smooth map. A vector field $X \in \mathfrak{X}(M)$ is f-related to a vector field $Y \in \mathfrak{X}(N)$ if $T_p f(X_p) = Y_{f(p)}$ for all $p \in M$.

- (a) X is f-related to Y if and only if $X_p(f \circ h) = Y_{f(p)}(h)$ for all functions $h \in \mathcal{C}^{\infty}(N, \mathbb{R})$ and all points $p \in M$.
- (b) If X is f-related to Y and γ is an integral curve of X, show that $f \circ \gamma$ is an integral curve of Y.
- (c) If f is a local diffeo, for every vector field $Y \in \mathfrak{X}(N)$ there exists a unique $X \in \mathfrak{X}(M)$ that is f-related to Y. We denote $f^*Y := X$. Thus if f is a diffeo, f-relatedness is a bijection from $\mathfrak{X}(M)$ to $\mathfrak{X}(N)$. In this case, if X is f-related to Y, we write $X = f^*Y$ and $Y = f_*X$.
- (d) If f is a closed embedding, show that every vector field $X \in \mathfrak{X}(M)$ is f-related to some vector field $Y \in \mathfrak{X}(N)$.

Hint: Construct Y locally, then use partitions of unity.

What happens if f is just an immersion? In this case, find and prove a local version of the fact.

(e) A vector field $X \in \mathfrak{X}(M)$ is **tangent** to a smooth submanifold $S \subseteq M$ if $X_p \in T_pS$ for all points $p \in S$. If this happens and in addition S is closed, show that every integral curve of X that visits S is contained in S.

Exercise 8.5. If X is a smooth vector field on a manifold M and $p \in M$ is a point where $X_p \neq 0$, then there exists a chart (U, ϕ) of M defined at p such $X|_U = \frac{\partial}{\partial \phi^0}$. *Hint:* It is easier to construct the inverse $\psi = \phi^{-1}$. Use a function of the form $\psi(x) = \Phi_X^{x^0}(f(x^1, \dots, x^{n-1}))$, where $f: U \to M$ is a suitable function defined on an open set $U \subseteq \mathbb{R}^{n-1}$.