=PFL

Dependability

Prof. George Candea
School of Computer & Communication Sciences

How to achieve dependability?

o Use modularity ...
o ...and REDUNDANCY for ...

o fault tolerance
* high reliability
* high availability

Eault latent K
A

activated =====> Error

latent

Types of software fauits/defects/hugs

* Bohrbug

* Helsenbug

o Schrodingbug

* Mandelbug

Types of software fauits/defects/hugs

* Bohrbug

* clear+ easy to reproduce => easy to fix

* Helisenbug
* (disappears when you attach with debugger
o Schrodingbug
 starts causing failure once you realize it should

* Mandelbug

* complex, obscure, chaotic, seemingly non-deterministic

Using redundancy to tolerate fauits

o "tolerate" faults = cope with errors or the resulting failures

* the actual goal is to tolerate the consequences of faults

* Using redundancy to cope with errors

* error-correction codes
* redundant copies/replicas (=coarse-grained ECC)

* Using redundancy to cope with failures

o server/service failover
* Internet routing

Greenland Sea

Kara Sea
Baffin Bay

N ———
|
1
o

Passages s Greenland
lceland

Russia

7
.-/
4
4
abra /4
4
ve Belarus
Ukraine -
Austria Kazakhstan
Mongolia
Q0 Romania
°Zo Uzbekistan Kyrgyzstan
ited States :
United States Turkmenistan
North
Aingr::c Afghanistan
h Ocean Nort
N Pakistan Pacif
n

Algeria

Ocea
Saudi Arabia

Q gMyanmar
(Burma)

Mall Niger

Sudan

Burking

Nigeria

South Sudan Ethiopia

——— -

peru
‘%.’ Bolivia

. Paraguay ' 7
Dile South
. Atlantic

Namibia Zimbabwe
Indian
Ocean

Botswana

Australia

South
Pacific

Ocean

Ocean
Uruguay
P Argentina

Avictrals -
. ctralia -
L)

. I~ .

2 N eman Ge r

. A51an 524 N .:“r.

- ZC(L ‘d

. S O . /

|) F . 7
//
/
/s

o Specification of what could go wrong and what cannot go wrong

o Used to predict consequences of failures
* Should also specify what can / cannot happen during recovery
* Remember the single points of failure (SPOFs)

o Example: N-version programming

* yse redundancy to tolerate software faults

Fault latgnt
activated =====> Error

latent
activated :==:> Fajlure

* Types of software defects (Bohrbug, Heisenbug, ...)
* Using redundancy for tolerating errors and failures

e Fault model

Dependable = Safety-critical 223

o Safety critical = system whose failure may result in "bad" outcomes

o SCADA, aviation, space, automotive, healthcare, ...

o Fail-safe = failure does not have "bad" consequences

o safety-critical # fail-safe

A dependable system...

* Availability = readiness for correct service

* Reliability = continuity of correct service

o Safety = absence of catastrophic consequences

* (Confidentiality = absence of unauthorized disclosure of information
* Integrity = absence of improper system state alterations

* Maintainability = ability to undergo repairs and modifications

Reliability

* Reliability = probability of continuous operation

* continuous operation = (correctly) producing outputs in response to inputs

Rm(t) = P(module m operates correctly at time ¢ |
m was operating correctly at =0)

ab)
© Ll |

b TBE |

- time
qb) y I =

= H -

=

»n A Aown

MTBF = ATTF +N7T7R.

Measuring reliability

* Ingeneral MTBF or MTTF (MTBF = MTTF + MTTR)
o Specifics: Example from SSD spec sheet: P/E cycles, TBW, GB/day, DWPD, MTBF ...

o Example: Samsung SSD 850 Pro SATA

o Warranty period = 10 years
o [BW=150 => over warranty period can read/write 40 GB each day
o MTBF = 2M hours (228 years)

* assume operation of 8 hrs/day
o 1K SSDs => you'd experience 1 failure every ~250 days (2M /8 / 1000)

IS systems failure ergodic 2

* Ergodicity => statistical properties of the entire process can be
deduced from a single, sufficiently long, random sample of the process

* Asystem has memory => conditional failure rate of a component is not independent
of how long the component has been operating

A

Touwbure /\J
z&_\;
K
)
Ba

Recap: Reliability

* Dependability = Reliability + Availability + Safety + ...
o Safety-critical vs. reliable

o MIBF=MTTF+MTIR

o Failure is rarely an ergodic process

Availlabiiity

* Availability = probability of producing (correct) outputs in response to inputs

Table 1 - Levels of Availability
Level of Percent of Downtime Downtime
Avallability Uptime per Year per Day
1 Nine 90% 36.5 days 2.4 hrs.
2 Nines 99% 3.65 days 14 min.
3 Nines 99.9% 8.76 hrs. 36 sec.
4 Nines 99.99% 52.6 min. 3.6 sec.
5 Nines 99.999% 5.25 min. .80 sec.
6 Nines 99.9999% 31.5 sec. 3.0 msec

Availability vs. Reliability

* Continuity of service does not matter (unlike reliability)

* Intheory: uptime is too strict a measure of availability
* |n practice: what's the difference?

 Examples of ...

* Highly available systems with poor reliability (and how is redundancy useq)
* Highly reliable systems with poor availability (and how is redundancy useq)

o Uptime => availability but Availability = uptime

Increasing system availability

ATEA~
Unoveld — /-———ﬂyw'j — Ldrbs:
HTRE

ﬂnanfwl — __M‘TTé
MR

* [wo levers to increase availability: MTTF and MTTR

* |e., Increase reliability o reduce recovery time

* To increase availability or reliability, must understand failure modes

* Def: When a system fails, how does that failure appear at the interface
of a component?

* Not the same as fault models !

Fallure mode 1: Fail-stop

e a.k.a. "crash failure" mode

o Def: halt in response to any internal error that threatens to turn into a
failure, before the failure becomes visible

* =>never expose arbitrary behavior

* Any system can be made fail-stop with triple-modular redundancy (TMR)

o Strict fault model
o 2f+ 1independent modules to tolerate f failures
* Achilles heel: voter

Failure mode 2: Fail-fast

o Def. immediately report at interface any situation that could lead to failure

* (Can stop immediately after detection or delay (if expect recovery)
* Must stop before failure manifests externally

* Requires frequent checks of state invariants

o (et auditabllity of error propagation

* Def: the component remains safe in the face of failure (but possibly
degraded functionality or performance)

o "Safety” Is context-dependent

o "Controlled" failure

Fallure mode 4: Fail-soft

* Def: internal failures lead to graceful degradation of functionality
instead of outright failure |

* Example: search engine

* system has redundancy at every level 62 g 9
* whatis the fault model?

o Intuition S ‘f/‘/?‘ls

* Functionality is always bottlenecked by I/O bandwidth of disks => data movement

* Thus not the network, not synchronization, ...
o =>Functionality tied to how much data can be moved per unit of time

* Harvestyvs. yield

Failure mode 4: Fail-soft: DQ Principle

LEP 72, W/
08 Principte : G?=Zue,"£7az @:a“‘* D8 vola' 5

T oet by 95y

Harvert = 24 ,
’ O+ ba P{f,\d/)(._ - Harverd x YilA = S
fitd = 8 |
&r
: Q
>
Q QC— & — 8‘ bAr .b-r
Q-— |
Wsies -
QQ Wi _:r

Recap: Increasing availability

e Failure modes

o Fail-stop, fail-fast, fail-safe, fail-soft
o harvestlyield, DQ principle

* Availability equations
* how can we reduce unavailability by 10x?

o Example: Internet search engine

* how to recover 10x faster?

Gomponents of recovery time

® Trecover = Tdetect + Tdiagnose + Trepair

e How to reduce Tgetect ?

e Automation
o Prediction/anticipation
o Trade-offs between FN and FPs

* How to reduce Tdiagnose?

e Lots of instrumentation, ML, ...

o Also a function of what recovery mechanism have available
o E.g., if only 1 way to recover, diagnosis takes zero time

* How to reduce Trepair?

* Mostly app-specific
 Reboot is universal

EXercise: Rehoot-hased recovery

* Design system (components) that recover(s) solely via (micro)rebooting
o Microreboot = surgical reboot of one or more components without affecting the rest
* Five design principles
o Modularization
o State segregation
* Functional decoupling

* Retryable interactions
o [eased resources

* Design encountered In, e.g., microservices

EXercise: Rehoot-hased recovery: Strong modularization

o Components with individual loci of control

o |Well defined interfaces
o Small in terms of program logic and startup time

® Treboot = lrestart T Tinitialization

Exercise: Rehoot-hased recovery: State segregation

* (oal: prevent microreboot from inducing corruption or state inconsistency

* apply modularization idea to all state

o Keep all important state in dedicated state stores

* stores located outside the application ...
* ... behind strongly-enforced high-level APIs (e.q., DBs, KV stores)

o Separate data recovery from app recovery => do each one better

o Segment the state by lifetime

EXercise: Rehoot-hased recovery: Functional decoupling

o (Goal
* reduced disruption of system during restart
* easy reintegration of component after reinit
* No direct references (e.g., no pointers) across component boundaries

* (Cross-component references stores outside component

o Naming indirection through runtime
o Marshall names into state store

Exercise: Rehoot-hased recovery: Retryable interactions

* (oal: make reintegration of component seamless by recovering in-flight
requests transparently

* Interact via timed RPCs - if no response, caller can gracefully recover

* timeouts help turn non-Byzantine failures into fail-stop events
* RPC to a microrebooting module throws RetryAfter(t) exception

* Action depends on whether RPC is idempotent or not

EXercise: Rehoot-hased recovery: Leased resources

* (oal: avoid resource leakage without fancy resource tracking

o Lease = timed ownership

* File descriptors, memory, ...
o Persistent long-term state
e (CPU execution time

* Requests carry TTL => automatically purged when TTL runs out

Recan: Rehoot-based recovery

* |nsight: Reboot as a universal "hammer” in curing failures

o (Can we systematically employ rebooting to cure failures?
* While everyone is trying to increase MTTF, why not try to reduce MTTR?

* Five design principles

* Modularization, State segregation, Functional decoupling, Retryable interactions, Leased resources

o Well suited for workloads consisting of fine-grained requests

o Used in Internet services/microservices, analytics engine, satellite ground station

* Recursive microrebooting
o LetMTTF and MTTR indicate boundaries of restart

Google "crash-only software” for more info...

* (oal: clean up state to prevent accumulation of errors

* [nsight: Reboot as a prophylactic
* Does nothing about defects, but reduces probability of turning errors into failures

* Turns unplanned downtime into planned downtime

* Dynamic version of "preventive maintenance”

* Release leaked resources, wipe out data corruption, ...

* Microrejuvenation: turn unplanned downtime into planned partial
downtime (or none at all)

® Trecover = Tdetect + Tdiagnose + Trepair

o With reboot-based recovery...

* Trecover - Tdetect T Treboot

* |frecovery is cheap (i.e., Trepair IS Small), can offer imperfect detection

* By reducing Trecover We reduce MTTR => availability goes up

* reliability is not affected in a well designed system

