Equilibria of collisionless systems

1rd part

Outlines

Weak bars

- the Lindblad resonances
- orbit families in realistic bars

The collisonless Boltzmann equation

- The distribution function (DF) of stellar systems
- The Collisionless Boltzmann equation
- Limitations

Relations between DFs and observables

- Density, velocity distribution function, mean velocity, velocity dispersion

The Jeans theorems

- Solutions of the Collisionless Boltzmann equation
- Symmetries and DFs

Stellar Orbits

Orbits in weak rotating bars

The weakly-bared galaxy model

$$R_{n}(L) = C_{n} \cos(x_{0}t + L) - \left[\frac{d\varphi_{n}}{dR} + \frac{2R\varphi_{n}}{R(R-R_{n})}\right] \frac{\cos(m(R_{0}-R_{0})L)}{x^{2} - m^{2}(R_{0}-R_{0})^{2}}$$

using
$$Y_o(t) = (\mathcal{R}_o - \mathcal{R}_o)t$$

$$R_{-}(4) = C_{n}cos\left(\frac{y_{0}}{g_{0}-y_{0}}+2\right) - \left[\frac{dg_{0}}{dR} + \frac{2Rg_{0}}{R(R-R_{0})}\right] \frac{cos(m y_{0})}{x^{2}-m^{2}(x_{0}-x_{0})^{2}}$$

$$\dot{\varphi}_{n} = -2 \mathcal{N}_{0} \frac{R_{n}}{R_{0}} - \frac{\phi_{b}(R_{0})}{R_{0}^{2}(\mathcal{P}_{0} - \mathcal{N}_{b})} \cos\left(m\left(\mathcal{R}_{0} - \mathcal{N}_{b}\right)t\right) + cte$$

$$\frac{\text{Discussion}}{\text{R}_{n}(4_{n}) = C_{n}\cos\left(\frac{y_{1},y_{2}}{R_{n}-A_{n}}+\lambda\right) - \left[\frac{dA}{dR} + \frac{2RA}{R(R-R_{n})}\right]_{R_{n}} \frac{\cos\left(m-y_{2}\right)}{x^{2}-m^{2}(R_{n}-R_{n})^{2}}$$

(1) if
$$\phi_{5}(R) = o$$
 (no perforbation)
 $R_{n}(L) = C_{n} \cos(x_{o}t + L)$ = $x(L)$ radial oscillations
 $\dot{\phi}_{n}(L) = -2 R_{o} \frac{R_{n}(L)}{R_{o}}$ => $y(L)$ oscillations along
the orbit

(2) if
$$C_n = 0$$
 $\phi_0 \neq 0$

$$R_n(q_n) = -\left[\frac{d\phi_n}{dR} + \frac{2R\phi_n}{R(R-R_n)}\right]_{R_n} \frac{\cos(m\phi_n)}{x^2 - m^2(x_n - R_n)^2}$$

$$= closed or h.l$$
(3) if $C_n \neq 0$ oscillations around the closed or hull
(same family) The orbit is not necessary closed

Resonances
$$A$$
 two problematic terms $\frac{1}{R_{c}-R_{b}}$ and $\frac{1}{R_{c}^{2}-m^{2}(R_{c}-R_{c})^{2}}$
 $\Rightarrow R_{A}$ may diverge A
1) $R_{0} = R_{b}$ Corotation we are at a redivs where the circular frequency is similar to the pattern speed of the bar speed of

Disk : Miyamoto-Nagai Bulge : Plummer

Inner Lindblad resonnances (ILR1, ILR2)

$$\Omega_{\rm b} = \Omega - \kappa/2$$

the orbit rotate faster than the bar

Corotation (CR)

 $\Omega_{\rm b}=\Omega$

Outer Lindblad resonnance (OLR)

$$\Omega_{\rm b} = \Omega + \kappa/2$$

the orbit rotate slower than the bar 8

11

Bifurcation : apparition of x2 (stabe)/x3 (unstable) orbits

x1 : prograde x4 : retrograde

Equilibria of collisionless systems

The collisionless Boltzmann equation

Introduction / Motivations

<u>So far, we</u> :

- 1. we modelled <u>static potentials</u> from a mass distribution (Poisson equation)
- 2. from the potential, we obtained forces and derived equations of motion leading us study orbits in different idealized potentials :
 - spherical potentials
 - axi-symmetric potentials (epicycles motions)
 - orbits in bared rotating potentials (motions around Lagrange points)

<u>But</u> :

- 1. <u>We did not used any velocity constraints</u>. We only used the positions of stars through the emission of light.
- 2. <u>Nothing tells us that the models we used are at the equilibrium</u>. This is not guarantee, if, for e.g., all velocities are zero...
- 3. <u>We did do not include the self-gravity</u> of the model or perturbations on it due to the orbits of stars.

Introduction / Motivations

<u>Goal</u> :

Build a self-consistent way galaxies, ensuring that they are at the equilibrium, i.e., if we compute the evolution of the galaxy under its own gravity, the evolution will be stationary.

 $_{\rightarrow}$ requires the description of the density but also the velocity field $\rho(\vec{x})$ $\vec{v}(\vec{x})$

<u>Assumptions</u> :

- 1. We will consider systems with a very large number of "particles" (stars, DM)
 - \rightarrow the collisionless approximation is valid
 - \rightarrow real orbits deviates not too much from the one predicted from the model (very large relaxation time)

We will seek for solution corresponding to $t_{
m r}$

 $t_{\rm relax} = \infty$

2. We will consider systems composed of N identical particles, i.e., with all the same mass.

All particles will be equivalent

Introduction / Motivations

<u>Goal</u> :

Build a self-consistent way galaxies, ensuring that they are at the equilibrium, i.e., if we compute the evolution of the galaxy under its own gravity, the evolution will be stationary.

 \rightarrow requires the description of the density but also the velocity field $\rho(\vec{x}) \qquad \vec{v}(\vec{x})$

<u>But</u> :

It is impossible to describe analytically the orbits of billions of stars :

 \rightarrow we need a probabilistic approach

Distribution tonotion (DF)
Detinition (DF)
Detinition (DF)

$$Detinition (D) \int (\vec{x}, \vec{v}, t) = 0$$
 or $\int (\vec{w}, t) = 0$ such that
 $\int g(\vec{x}, \vec{v}, t) = 0$ $\int g(\vec{x}, \vec{v}, t) = 0$ or $\int (\vec{w}, t) = 0$ $\int g(\vec{x}, \vec{v}, t) = 0$ $\int g(\vec{w}, t) = 0$ $\int g(\vec{w},$

$$\frac{\text{Distribution touchim}}{\text{Detinition}} (DF)$$

$$\frac{\text{Detinition}}{2} \left(\widehat{S}\left(\widehat{x}, \widehat{v}, t\right) = 3\widehat{x}d^{3}\widehat{v} = 0 \text{ or } \widehat{S}\left(\widehat{w}, t\right)d^{3}\widehat{w}$$

$$= is the number of stars having position \widehat{x} and $velocities \overline{v} = (\widehat{w}) \text{ in the intervals at time } t;$

$$= \widehat{x}_{i} \in [\widehat{x}, \widehat{x} + d\widehat{x}]$$

$$= \widehat{S}\left(\widehat{x}, \widehat{v}, t\right)d^{3}\widehat{x}d^{3}v = N$$

$$= \widehat{S}\left(\widehat{w}, t\right)d^{3}\widehat{w} = N$$

$$= \widehat{S}\left(\widehat{w}, t\right)d^{5}\widehat{w} = N$$

$$= \widehat{S}\left(\widehat{w}, t\right)d^{5}\widehat{w} = N$$

$$= \widehat{S}\left(\widehat{w}, t\right)d^{5}\widehat{w} = N$$$$

Combining Det. (1) and Det (2)

$$N g(\hat{x}, \hat{v}, \epsilon) = \hat{g}(\hat{x}, \hat{v}, \epsilon)$$

The probability of finding a ster "i" in the subvolume of the phase space & is :

$$P = \int_{V} g(\vec{\omega}) d\vec{\omega}$$

However, imagine that we are using another <u>canonical</u> coordinate system \overline{W} (in which the Hamilton equations are valid) e.g. (x, y, $p_x=\infty$, $p_y=y$)-> (r, E, $p_r=r$, $p_e=r^{2}\Theta$)

$$P^{W} = \int_{V} F(\vec{w}) d^{G} \vec{w} = P$$

The probability must not be attend by a coordinate change.

If \mathcal{V} is taken Small enough, we can assume $g(\tilde{w})$ and $F(\tilde{w})$ to be carstant and hence $g(\tilde{w}_r) \int d\tilde{w} = F(\tilde{w}_r) \int d\tilde{w}$

But, for canonical coordinates, the phase space volume element is the same :

$$\int_{V} d^{c} \vec{w} = \int_{V} d^{c} \vec{w}$$
The density of the phase space
$$\frac{g(\vec{w})}{g(\vec{w})} = F(\vec{w})$$
is independent of the coordinate
system

Corollary: We can use any system of canonical coordinates
$$\overline{W} = (\overline{q}, \overline{p})$$
 to define the distribution function
The collisonless Boltzmann epulin

· What is the evolution of S(W) over time ? 8 - NE As the mass, the probability is a conserved quantity. the number of stars is a conserved quankity. in the phase space Continuity equation (similar than for hydrodynamics) : dH = E gV. dS at trans thur the time variation of the mass in V (Gauss Mass conservation Probability conservation $\frac{\partial p}{\partial t} + \vec{\nabla}_{\alpha}(p\vec{v}) = 0$ $\frac{\partial f}{\partial t} + \vec{\nabla}_{u}(f\vec{w}) = 0$ probability flux through the surface mass flux through the surface of the volume of the volume

Analogy with the continuity equation in hydrodynamics
$$g(\vec{x},t)$$
 $\vec{v} = \frac{d}{dt}\vec{x}$ $g(\vec{x},t)$ $\vec{v} = \frac{d}{dt}\vec{x}$ $\frac{\partial g}{\partial t}$ $\vec{v} = \frac{d}{dt}\vec{w}$ $\vec{v} = \frac{d}{dt}\vec{v}$ $\vec{v} = \frac{d}{dt}\vec{w}$

.

$$\frac{Pastrangian derivative}{\frac{d}{dt}g(\vec{x},t)} = \frac{\partial g}{\partial t} + \vec{v} \cdot \vec{v}_{x}g$$

$$= \frac{\partial g}{\partial t} + \vec{v}_{x}(g\vec{v}) - g\vec{v}_{x}\vec{v}$$

$$= o \quad continut y \quad Eqn.$$

$$\frac{d}{dt}g(\vec{x},t) = -g \quad \vec{v}_{x} \quad \vec{v}$$

$$Hhe increase \quad of$$

$$g \quad ala_{y} \quad Hh \quad Hlow$$

$$is \quad dve \quad to \quad compression$$

$$in \quad compressible \quad Hloid :$$

$$\vec{v}_{x} \quad \vec{v} = 0$$

$$\frac{Pagrangian derivative}{d g(\tilde{w}_{1}+)} = \frac{\partial g}{\partial t} + \tilde{w} \cdot \tilde{P}_{w} g$$

$$= \frac{\partial g}{\partial t} + \tilde{V}_{w} (g \tilde{w}) - g \tilde{V}_{w} \tilde{w}$$

$$= \circ \operatorname{cantrol}_{Y} \operatorname{Eqr.} \operatorname{cantonical}_{counds}$$

$$\frac{d}{d t} g(\tilde{w}_{1}+) = \circ$$

$$= \circ \operatorname{behaves like an}_{incompress : ble fluid}$$
The flow through the phase
space is in compressible
$$\frac{g}{d t} \operatorname{space}_{t} \operatorname{is canstent}_{t}$$

$$\begin{aligned} E_{x \text{ press ing}} & \text{ the continuity equation using}} \quad \widetilde{w} = (\widehat{q}, \widehat{p}) \\ \\ \frac{d}{dt} g(\widetilde{w}, \epsilon) &= \frac{\partial g(\widetilde{w}, \epsilon)}{\partial t} + \overline{\nabla}_{z}(g(\widetilde{w}, \epsilon), \widetilde{w}) = 0 \\ \\ &= \frac{\partial g(\widetilde{w}, \epsilon)}{\partial t} + \overline{w} \quad \nabla_{z}(g(\widetilde{w}, \epsilon)) = 0 \\ \\ &= \frac{\partial g(\widehat{q}, \widehat{p})}{\partial t} + \xi \quad \widehat{q}; \quad \frac{\partial}{\partial q}; g(\widehat{q}, \widehat{p}) + \xi \quad \widehat{p}; \quad \frac{\partial}{\partial p}; g(\widehat{q}, \widehat{p}) \\ \\ \\ \frac{d}{dt} g(\widetilde{w}, \epsilon) &= \frac{\partial g(\widehat{q}, \widehat{p})}{\partial t} + \frac{i}{q} \quad \frac{\partial}{\partial \widehat{q}} g(\widehat{q}, \widehat{p}) - i + \widehat{p} \quad \frac{\partial}{\partial \widehat{p}} g(\widehat{q}, \widehat{p}) = 0 \end{aligned}$$

The Collisionless Boltzmann Equation

Using the Hamilton Equations

$$\vec{q} = \frac{\partial H}{\partial \vec{p}}$$
 $\vec{p} = -\frac{\partial H}{\partial \vec{q}}$
Then $\frac{\partial}{\partial t}g + \vec{q} \frac{\partial}{\partial q}g + \vec{p} \frac{\partial}{\partial p}g = 0$
becomes $\frac{\partial}{\partial t}g + \frac{\partial H}{\partial p}\frac{\partial g}{\partial q} - \frac{\partial H}{\partial q}\frac{\partial g}{\partial p} = 0$
 $\frac{\partial}{\partial t}g + [g, H] = 0$
Poisson brackets $[A, B] := \frac{\partial A}{\partial q}\frac{\partial B}{\partial p} - \frac{\partial A}{\partial p}\frac{\partial B}{\partial q}$
 $= \sum_{i}^{n} \frac{\partial A}{\partial q_{i}}\frac{\partial B}{\partial p_{i}} - \frac{\partial A}{\partial p}\frac{\partial B}{\partial q}$

But
$$dN(t) = dN(t')$$

 $= \frac{dN}{dt} = 0$
Because EOM are 1st order
differential equations, only
the points that were in dV
at t are in dV' at t'

$$\frac{dN}{dt} = \frac{d}{dt} \left(\hat{\mathcal{G}}(w, t) dV(t) \right)$$

$$= \frac{d}{dt} \left(\hat{\mathcal{G}}(w, t) \right) dV(t) + \hat{\mathcal{G}}(w, t) \frac{d}{dt} (dV(t)) = 0$$

$$= 0 \left(\frac{Boltzmann}{eqratim} \right)$$

$$= N = \frac{d}{dt} \left(dV(t) \right)$$

$$= O(t)$$

The distribution function remains constant along the flow

Illustration 1 : Ideal race: each runner has a constant speed

x

x

The distribution function remains constant along the flow

46

x

Illustration 2 : Harmonic oscillator

$$H(x, \dot{x}) = \frac{1}{2}\dot{x}^2 + \frac{1}{2}\omega x^2$$

 $\omega = 1$

Illustration 3 : Harmonic oscillator

$$H(x, \dot{x}) = \frac{1}{2}\dot{x}^2 + \frac{1}{2}\omega x^2 \qquad \qquad \omega = 0.75$$

)

The Collisionless Boltzmann equation in various coordinates

 p_{z}

Generalized coordinates

Cartesian coordinates

$$\vec{p} = \frac{\partial L(\vec{q}, \vec{p})}{\partial \dot{\vec{q}}}$$

$$\frac{\partial f}{\partial t} + \dot{\vec{q}} \cdot \frac{\partial f}{\partial \vec{q}} + \dot{\vec{p}} \cdot \frac{\partial f}{\partial \vec{p}} \equiv \frac{\partial f}{\partial t} + \frac{\partial f}{\partial \vec{q}} \cdot \frac{\partial H}{\partial \vec{p}} - \frac{\partial f}{\partial \vec{p}} \cdot \frac{\partial H}{\partial \vec{q}} = 0$$

$$p_{x} = \dot{x} = v_{x}$$

$$p_{y} = \dot{y} = v_{y}$$

$$H = \frac{1}{2} \left(v_{x}^{2} + v_{y}^{2} + v_{z}^{2} \right) + \Phi(x, y, z)$$

$$p_{z} = \dot{z} = v_{z}$$

$$\frac{\partial f}{\partial t} + \vec{v} \cdot \frac{\partial f}{\partial \vec{x}} - \frac{\partial \Phi}{\partial \vec{x}} \cdot \frac{\partial f}{\partial \vec{v}} = 0$$

Spherical coordinates

$$\begin{cases} p_r = \dot{r} = v_r \\ p_\theta = r^2 \dot{\theta} = r v_\theta \\ p_\phi = r^2 \sin^2(\theta \dot{\phi}) = r \sin(\theta) v_\phi \end{cases} \qquad \qquad H = \frac{1}{2} \left(p_r^2 + \frac{p_\theta^2}{r^2} + \frac{p_\phi^2}{r^2 \sin^2(\theta)} \right) + \Phi(R, \theta, \phi)$$

$$\frac{\partial f}{\partial t} + p_r \frac{\partial f}{\partial r} + \frac{p_\theta}{r^2} \frac{\partial f}{\partial \theta} + \frac{p_\phi}{r^2 \sin^2(\theta)} \frac{\partial f}{\partial \phi} - \left(\frac{\partial \Phi}{\partial r} - \frac{p_\theta^2}{r^3} - \frac{p_\phi^2}{r^3 \sin^2(\theta)}\right) \frac{\partial f}{\partial p_r} - \left(\frac{\partial \Phi}{\partial \theta} - \frac{p_\phi^2 \cos(\theta)}{r^2 \sin^3(\theta)}\right) \frac{\partial f}{\partial p_\theta} - \frac{\partial \Phi}{\partial \phi} \frac{\partial f}{\partial p_\phi} = 0$$

Cylindrical coordinates

$$\begin{cases} p_R = \dot{R} = v_R \\ p_\phi = R^2 \dot{\phi} = RV_\phi \\ p_z = \dot{z} = v_z \end{cases} \qquad \qquad H = \frac{1}{2} \left(p_R^2 + \frac{p_\phi^2}{R^2} + p_z^2 \right) + \Phi(R, \phi, z) \\ \frac{\partial f}{\partial t} + p_R \frac{\partial f}{\partial R} + \frac{p_\phi}{R^2} \frac{\partial f}{\partial \phi} + p_z \frac{\partial f}{\partial z} - \left(\frac{\partial \Phi}{\partial R} - \frac{p_\phi^2}{R^3} \right) \frac{\partial f}{\partial p_R} - \frac{\partial \Phi}{\partial \phi} \frac{\partial f}{\partial p_\phi} - \frac{\partial \Phi}{\partial z} \frac{\partial f}{\partial p_z} = 0 \end{cases}$$

Limits of the Collisionless Boltzmann equation

I. Finite stellar lifetime

Define

 Stars are created and die. The hypothesis of conservation of the probability/number is violated.

We should better have (in Cartesian coordinates):

$$\begin{split} \frac{\partial f}{\partial t} + \vec{v} \cdot \frac{\partial f}{\partial \vec{x}} - \frac{\partial \Phi}{\partial \vec{x}} \cdot \frac{\partial f}{\partial \vec{v}} &= B(\vec{x}, \vec{v}, t) - D(\vec{x}, \vec{v}, t) \\ & \sim \frac{v}{R} f \qquad \sim \frac{a}{v} f \qquad \text{Rate per unit phase-space volume at which stars are born and die} \\ & \sim \frac{1}{t_{\text{cross}}} f \qquad \sim \frac{1}{t_{\text{cross}}} f \\ & \gamma &= \frac{|B - D|}{f} t_{\text{cross}} \end{split}$$

If $\gamma \ll 1$ the approximation is ok

i.e. : the fractional change in the number of stars per crossing time must be small. 52

Limits of the Collisionless Boltzmann equation

Examples:

- M-stars in an elliptical galaxies
 - \cdot Life time > 10 Gyr (> t_{\rm cross}) $\gamma \cong 0$
 - B=0 (no star formation)
- O-stars in the Milky Way
 - · Life time < 100 Myr (< t_{cross})

$$\gamma \gg 1$$

- Do not move much, the phase space distribution will be dominated by star formation processes
- Main sequence stars (M<1.5 M_{o})
 - Life time > 1 Gyr (> t_{cross})

 $\gamma \cong 0$

Limits of the Collisionless Boltzmann equation

- II. Correlation between stars
 - We assumed that the probability of finding one peculiar stars somewhere in the phase space is independent of the others. Mathematically: the probability of finding particle "i" in $d^6 \vec{\omega}$ and "j" in $d^6 \vec{\omega'}$ is :

$$f(\vec{\omega})d^6\vec{\omega}\cdot f(\vec{\omega'})d^6\vec{\omega'}$$

This is not completely true, as stars interact gravitationally and my generate correlations.

However, this is not a real problem as long as the forces between nearby stars do not dominates over the forces due to the rest of the system (the definition of a collisionless system).

Equilibria of collisionless systems

Relations between the DFs and observables

Distribution tunction in the configuration space

$$Y(\vec{x}) = \int d^3 \vec{v} \ g(\vec{x}, \vec{v})$$

Distribution tunction in the configuration space

$$n(\vec{x}) = Nv(\vec{x}) = \int d^3 \vec{v} \ \hat{g}(\vec{x}, \vec{v})$$

Distribution function in the configuration space

$$f(\vec{x}) = N \cdot m \cdot r(\vec{x}) = m \int d^3 \vec{v} \ \hat{g}(\vec{x}, \vec{v})$$

Distribution function in the velocity space

= velocity distribution function (VDF)

can be measured near the sun

$$\frac{\text{Mean velocity}}{\vec{v}(\vec{x})} = \int \vec{v} P_{x}(\vec{v}) d^{3}\vec{v} = \frac{1}{\nu(\vec{x})} \int \vec{v} g(\vec{x},\vec{v}) d^{3}\vec{v}$$

$$\frac{1}{\nu(\vec{x})} \int \vec{v} g(\vec{x},\vec{v}) d^{3}\vec{v} = \frac{1}{\nu(\vec{x})} \int \vec{v} g(\vec{x},\vec{v}) d^{3}\vec{v}$$

$$\frac{1}{\vec{v}_{x}(\vec{x})} \int \vec{v} g(\vec{x},\vec{v}) d^{3}\vec{v} = \frac{1}{\nu(\vec{x})} \int \vec{v} g(\vec{x},\vec{v}) d^{3}\vec{v}$$

$$\frac{1}{\vec{v}_{x}(\vec{x})} \int \vec{v} g(\vec{x},\vec{v}) d^{3}\vec{v} = \frac{1}{\nu(\vec{x})} \int \vec{v} g(\vec{x},\vec{v}) d^{3}\vec{v}$$

$$\frac{1}{\vec{v}_{x}(\vec{x})} = \int \vec{v} \cdot \vec{v} P_{x}(\vec{v}) d^{3}\vec{v} = \frac{1}{\nu(\vec{x})} \int \vec{v} \cdot \vec{v} g(\vec{x},\vec{v}) d^{3}\vec{v}$$

Velocity dispersion tensor (second moment of the VDF)

$$\sigma_{ij}^{2} = \int (v_{i} - \bar{v}_{i})(v_{j} - \bar{v}_{j}) P_{\hat{x}}(\bar{v}) d^{3}\bar{v}$$

$$= \frac{1}{v(\bar{x})} \int (v_{i} - \bar{v}_{i})(v_{j} - \bar{v}_{j}) f(\bar{x}, \bar{v}) d^{3}\bar{v}$$

$$= \int v_{i}v_{j} f(\bar{x}, \bar{v}) d^{3}\bar{v} - \left(\int v_{i} f(\bar{x}, \bar{v}) d^{3}v\right) \int \int (\int v_{i} f(\bar{x}, \bar{v}) d^{3}v)$$

$$= \overline{v_{i}v_{j}} - \overline{v_{i}}\bar{v_{j}}$$

$$Pescribe an ellipsoid (velocity ellipsoid)$$

$$\frac{\sigma_{33}}{\sigma_{44}} = \overline{e_{i}}$$

$$\sigma_{ij}^{2} = \sigma_{ij}^{2} S_{ij} = \begin{pmatrix}\sigma_{44} & \sigma_{54} \\ \sigma_{54} & \sigma_{55} \end{pmatrix}$$

Equilibria of collisionless systems

The Jeans Theorems

How can we solve the collisionless Question : Boltzmann equation ? Start with a 1.D steady state solution $\frac{\partial B}{\partial t} = 0$ $\frac{\partial b}{\partial H} \frac{\partial d}{\partial s} - \frac{\partial d}{\partial H} \frac{\partial b}{\partial s} = 0$ ġ $\frac{\partial x}{\partial n} = \frac{\partial x}{\partial \phi}$ In carthesian coordinates $\frac{\partial x}{\partial \xi} - \frac{\partial \varphi}{\partial \xi} - \frac{\partial x}{\partial \xi} = 0$

$$\frac{\partial g}{\partial x} v - \frac{\partial \phi}{\partial x} \frac{\partial g}{\partial v} = 0$$
 linear homogeneous
differential equation
Solutions from Lagrange's equations
$$\frac{\partial x}{v} = -\frac{\partial V}{\partial \phi}$$
$$-\frac{\partial \phi}{\partial x} dx = v dv$$
$$I(x,v) = \frac{1}{2}v^{2} + \phi(x) \qquad \text{is a solution}$$
$$dI(x,v) = v dv + \frac{\partial \phi}{\partial x} dx$$
$$\frac{\partial I}{\partial x} = \frac{\partial V}{\partial x}$$
The Hamiltonian $H(x,v)$ is a solution of the static CBE is

Back to the integrals of motion
The function
$$I(\vec{x}(t), \vec{v}(t))$$
 is an integral of motion if
 $\frac{d}{dt} I(\vec{x}(t), \vec{v}(t)) = 0$ along the trajectory.
 $\frac{But}{dt} = \frac{\partial I}{\partial \vec{x}} \cdot \vec{x} + \frac{\partial I}{\partial \vec{v}} \cdot \vec{v} = 0$
 $= \frac{\partial I}{\partial \vec{x}} \cdot \vec{v} - \frac{\partial I}{\partial \vec{v}} \cdot \vec{v} \neq 0$ Similar to the
Collisionless Boltzmann
 $equation$
If $I(\vec{x}, \vec{v})$ is a steady state solution of the
Cullisionless Boltzbann equation

Jeans theorems

I. Any steady-state solution of the collisionless Boltzmann equation depends on the phase-space coordinates only through integrals of motion in the given potential.

II. Any function of integrals of motion yields a steady-state solution of the collisonless Boltzmann equation.

Jeans theorems

I. Any steady-state solution of the collisionless Boltzmann equation depends on the phase-space coordinates only through integrals of motion in the given potential.

Demonstration:

If a function is a solution of the steady-state collisionless Boltzmann equation, then, it is an integral of motion, thus the function depends on the phase-space coordinates only through integrals of motion (itself !).

II. Any function of integrals of motion yields a steady-state solution of the collisonless Boltzmann equation.

Jeans theorems

I. Any steady-state solution of the collisionless Boltzmann equation depends on the phase-space coordinates only through integrals of motion in the given potential.

Demonstration:

If a function is a solution of the steady-state collisionless Boltzmann equation, then, it is an integral of motion, thus the function depends on the phase-space coordinates only through integrals of motion (itself !).

II. Any function of integrals of motion yields a steady-state solution of the collisonless Boltzmann equation.

Demonstration:

Assume $f(\vec{x}, \vec{v}) = f(I_1(\vec{x}, \vec{v}), I_2(\vec{x}, \vec{v}), I_3(\vec{x}, \vec{v}), ...)$ and derivate...

Jeans theorems

I. Any steady-state solution of the collisionless Boltzmann equation depends on the phase-space coordinates only through integrals of motion in the given potential.

Demonstration:

If a function is a solution of the steady-state collisionless Boltzmann equation, then, it is an integral of motion, thus the function depends on the phase-space coordinates only through integrals of motion (itself !).

II. Any function of integrals of motion yields a steady-state solution of the collisonless Boltzmann equation.

Extremely useful to generate DFs

Demonstration:

Assume $f(\vec{x}, \vec{v}) = f(I_1(\vec{x}, \vec{v}), I_2(\vec{x}, \vec{v}), I_3(\vec{x}, \vec{v}), ...)$ and derivate...

Choices of DFs and relations with the velocity moments
1. DFs that depend only on M (no particular symmetry)
Ergodic distribution touchians
$$\varphi = \varphi(\vec{x}, t)$$

 $\vec{E}_{x} am ple$ $\begin{cases} H(\vec{x}, \vec{v}) = \frac{1}{2}\vec{v}^{2} + \varphi(\vec{x}) \\ g = g(\frac{1}{2}\vec{v}^{2} + \varphi(\vec{x})) \end{cases}$
Hean velocity dependency is
only through v^{2} (isothropic)
 $\vec{v}(\vec{x}) = \frac{1}{2}\vec{v}^{2} + \varphi(\vec{x}) \end{pmatrix}$
diversity v^{2} (isothropic)
indeced
 $\vec{v}_{x}(\vec{x}) = \frac{1}{2}(\vec{x}) \int_{-\sigma}^{\sigma} \int_{-\sigma}^$
Velocity dispersions

$$\sigma_{ij}^{t} = \frac{1}{\gamma(\overline{x})} \int (v_{i}, \overline{y})(v_{j}, \overline{y}) \delta\left(\frac{1}{2}v^{2} + \phi(\overline{x})\right) d^{3}v$$

$$= \int_{ij} \sigma^{2} \qquad \text{odd}, \text{ exapl if } i=j \qquad (\overline{v}, = \overline{v}_{2j} = \overline{v}_{2j})$$

$$\sigma^{2} = \frac{1}{\gamma(\overline{x})} \int_{-\infty}^{\infty} V_{2}^{2} dV_{x} \int_{0}^{z} dv_{3} \int_{0}^{z} dv_{4} \delta\left(\frac{1}{2}v^{2} + \phi(\overline{x})\right)$$
Using spherical coord in velocity space :
$$\int_{0}^{\infty} V_{2}^{2} = v^{2} \cos^{2}\theta$$

$$v^{2} = v^{2} \cos^{2}\theta$$

2. DFs that depend on H and
$$\vec{L}$$
 (spherical symmetry)
We restrict our shids to symmetric DFs : indep. at any direction
 $g(\vec{x}, \vec{v}) = g(H, L)$
 $\vec{v} = \vec{v} (H, L)$
 $\vec{v} = \vec{v} \vec{v}$
rodial velocits : $\vec{v}_r = v_r \vec{e}_r$
tongential velocits : $\vec{v}_r = v_r \vec{e}_r$
 $\vec{v}_t^2 = \vec{v} \vec{e}_r^2 + \vec{v} \vec{v}_r^2$
 $L = r^2 \vec{o} = r v_t = r \sqrt{v_e^2 + v_e^2}$
 $M = \frac{1}{2} (v_r^2 + v_t^2) + \phi(r)$

2. DFs that depend on H and L

Mean velocity

$$\overline{v}_{r} = \frac{1}{r(n)} \int v_{r} \, \vartheta\left(\frac{1}{2}\left(v_{r}^{2} + v_{t}^{2}\right) + \varphi(r), rv_{t}\right) \, d^{2}v$$

$$= \frac{1}{r'(n)} \int v_{r} \, dv_{r} \int d^{2}\overline{v}_{t}^{*} \, \vartheta\left(\frac{1}{2}\left(v_{r}^{2} + v_{t}^{2}\right) + \varphi(r), rv_{t}\right) = 0$$

$$= \frac{1}{r'(n)} \int \overline{v}_{t} \, d^{2}\overline{v}_{t} \int dv_{r} \quad \vartheta\left(\frac{1}{2}\left(v_{r}^{2} + v_{t}^{2}\right) + \varphi(r), rv_{t}\right) = 0$$

$$= \frac{1}{r'(n)} \int \overline{v}_{t} \, d^{2}\overline{v}_{t} \int dv_{r} \quad \vartheta\left(\frac{1}{2}\left(v_{r}^{2} + v_{t}^{2}\right) + \varphi(r), rv_{t}\right) = 0$$

$$= \frac{1}{r'(n)} \int v_{t} \, d^{2}\overline{v}_{t} \int dv_{r} \quad \vartheta\left(\frac{1}{2}\left(v_{r}^{2} + v_{t}^{2}\right) + \varphi(r), rv_{t}\right) = 0$$

$$= \frac{1}{r'(n)} \int v_{t} \, d^{2}\overline{v}_{t} \int dv_{r} \quad \vartheta\left(\frac{1}{2}\left(v_{r}^{2} + v_{t}^{2}\right) + \varphi(r), rv_{t}\right) = 0$$

$$= \frac{1}{r'(n)} \int v_{t} \, d^{2}\overline{v}_{t} \int dv_{r} \quad \vartheta\left(\frac{1}{2}\left(v_{r}^{2} + v_{t}^{2}\right) + \varphi(r), rv_{t}\right) = 0$$

$$= \frac{1}{r'(n)} \int v_{t} \, d^{2}\overline{v}_{t} \int dv_{r} \quad \vartheta\left(\frac{1}{2}\left(v_{r}^{2} + v_{t}^{2}\right) + \varphi(r), rv_{t}\right) = 0$$

$$= \frac{1}{r'(n)} \int v_{t} \, d^{2}\overline{v}_{t} \int dv_{r} \quad \vartheta\left(\frac{1}{2}\left(v_{r}^{2} + v_{t}^{2}\right) + \varphi(r), rv_{t}\right) = 0$$

$$= \frac{1}{r'(n)} \int v_{t} \, d^{2}\overline{v}_{t} \int dv_{r} \, \vartheta\left(\frac{1}{2}\left(v_{r}^{2} + v_{t}^{2}\right) + \varphi(r), rv_{t}\right) = 0$$

$$= \frac{1}{r'(n)} \int v_{t} \, dv_{t} \int dv_{r} \, \vartheta\left(\frac{1}{2}\left(v_{r}^{2} + v_{t}^{2}\right) + \varphi(r), rv_{t}\right) = 0$$

3. DFs that depend on H and
$$L_2$$

$$\begin{cases} (z_1)^{1/2} dv_1 + v_1^2 + v_1^2 \\ \zeta_1(v_1^2 + v_1^2 + v_1^2) + \phi(R, 2) \\ \zeta_1(v_1^2 + v_1^2 + v_1^2) + \phi(R, 2) \\ \zeta_1(v_1^2 + v_1^2 + v_1^2) + \phi(R, 2) \\ \zeta_1(v_1^2 + v_1^2) + \phi(R, 2) \\ \zeta_1(v_1^2 + v_1^2 + v_1^2) + \phi$$

Velocity dispersions

PR

$$\begin{aligned}
\sigma_{R}^{2} &= \frac{1}{\nu(m)} \int dV_{R} \quad v_{R}^{2} \int dV_{q} \int dV_{q} \quad \delta\left(\frac{1}{2}\left(v_{r}^{2} + V_{q}^{2} + v_{q}^{2}\right) \pm \phi(R, 2), R V_{q}\right) \\
\sigma_{q}^{2} &= \sigma_{R}^{2} \qquad \left(\begin{array}{c} \text{bolh variables} \quad V_{R} \text{ and } V_{q} \quad \text{can be exchanged} \\
\sigma_{q}^{2} &= \frac{1}{\nu(m)} \int dV_{q} \left(v_{q} - \bar{q}_{q}\right)^{2} \int dV_{q} \quad dV_{R} \quad \delta\left(\frac{1}{2}\left(v_{r}^{2} + V_{q}^{2} + v_{q}^{2}\right) \pm \phi(R, 2), R V_{q}\right) \\
\sigma_{q}^{2} &= \frac{1}{\nu(m)} \int dV_{q} \left(v_{q} - \bar{q}_{q}\right)^{2} \int dV_{q} \quad dV_{R} \quad \delta\left(\frac{1}{2}\left(v_{r}^{2} + V_{q}^{2} + v_{q}^{2}\right) \pm \phi(R, 2), R V_{q}\right) \\
\sigma_{q}^{2} &= \frac{1}{\nu(m)} \int dV_{q} \left(v_{q} - \bar{q}_{q}\right)^{2} \int dV_{q} \quad dV_{R} \quad \delta\left(\frac{1}{2}\left(v_{r}^{2} + V_{q}^{2} + v_{q}^{2}\right) \pm \phi(R, 2), R V_{q}\right) \\
\sigma_{q}^{2} &= \sigma_{q}^{2} \\
\sigma_{q}^{2}$$

Interpretation

 $1-D \quad \text{potential} \quad \left\{ \begin{array}{l} E = \frac{1}{2} \sqrt{2} + \phi(r) \\ \sqrt{2} \left(E - \phi(r) \right) \end{array} \right\}$ Example 1 a) $f(x,v) = f(E) = \delta(E-E_{\bullet})$ $V = \pm \sqrt{E_c - \phi(r_1)}$ b) $f(\alpha, v) = f(t)$ E=Eo give a weight to orbits depending on then everyy 0.4 0.6 0.8 0.0 0.2 1.0 r

Example 2 3D - sphenical potential
- orbits described in plans, characterized by (E,L)
a) Ergodic DF:
$$g(\bar{x}, \bar{v}) = g(E)$$

6 0 0 0 0 0 0 0

 $\sigma_r^2 \neq \sigma_e^2 = \sigma_{\varphi}^2$

 $\sigma_{\varphi}^{2} \neq \sigma_{R}^{2} = \sigma_{z}^{2}$

c) non Ergodic DF:
$$g(\overline{x}, \overline{v}) = g(\overline{x}, \overline{L}) = g_{\overline{x}}(\overline{x}) g_{\overline{L}}(\overline{L})$$

with $g_{\overline{L}}(\overline{L}) = 0$ if f_{Ly}^{Lx} to
model built out of arbits by in the 2 = 0 of

The End