Exercise 6.1. (a) If $f: M \rightarrow N$ is an immersion, show that a continuous map $h: L \rightarrow M$ is \mathcal{C}^{k} if the composite $f \circ h$ is \mathcal{C}^{k}.
Solution. This is called the initial property of immersions; it is now included in Section 3.3 of the lecture notes.
(b) If $f: M \rightarrow N$ is an embedding, show that a function $h: M \rightarrow L$ is \mathcal{C}^{k} if the composite $f \circ h$ is \mathcal{C}^{k}.

Solution. This is the initial property of embeddings, also proved in Section 3.3 of the notes.
(c) If $f_{0}: M_{0} \rightarrow N$ and $f_{1}: M_{1} \rightarrow N$ are \mathcal{C}^{k} embeddings with the same image, show that there is a diffeomorphism $h: M_{0} \rightarrow M_{1}$ such that $f_{1} \circ h=f_{0}$.
Solution. Define the bijection $h=f_{1}^{-1} \circ f_{0}: M_{0} \rightarrow M_{1}$. The composite $f_{1} \circ h=f_{0}$ is \mathcal{C}^{k}, and since the map f_{1} has the initial property because it is an embedding, it follows that h is \mathcal{C}^{k}. The inverse of h is the map $h^{-1}=f_{0}^{-1} \circ f_{1}$ and it is \mathcal{C}^{k} by the same argument. Therefore h is a diffeomorphism.

Exercise 6.2. If S_{0}, S_{1} are \mathcal{C}^{r}-embedded submanifolds of M_{0}, M_{1} respectively, then $S_{0} \times S_{1}$ is a \mathcal{C}^{r}-embedded submanifold of $M_{0} \times M_{1}$.

Solution. By hypothesis there exists embeddings $f_{0}: L_{0} \rightarrow M_{0}$ and $f_{1}: L_{1} \rightarrow M_{1}$ whose images are S_{0} and S_{1} respectively. The set $S_{0} \times S_{1}$ is the image of the \mathcal{C}^{r} map $f_{0} \times f_{1}: L_{0} \times L_{1} \rightarrow M_{0} \times M_{1}$ that sends $\left(p_{0}, p_{1}\right) \mapsto\left(f_{0}\left(p_{0}\right), f_{1}\left(p_{1}\right)\right)$. Thus it suffices to prove that $f_{0} \times f_{1}$ is a \mathcal{C}^{r} embedding.

We check first that $f_{0} \times f_{1}$ is an immersion. For this, note that for each point $p=$ $\left(p_{0}, p_{1}\right)$ the tangent transformation $\mathrm{T}_{p} f_{0} \times f_{1}$ sends $\left(v_{0}, v_{1}\right) \mapsto\left(\mathrm{T}_{p_{0}} f_{0}\left(v_{0}\right), \mathrm{T}_{p_{1}} f_{1}\left(v_{1}\right)\right)$. (Here we are using the identification $T_{p_{0}, p_{1}}\left(L_{0} \times L_{1}\right) \equiv \mathrm{T}_{p_{0}} L_{0} \times \mathrm{T}_{p_{1}} L_{1}$.) This transformation is injective since both $\mathrm{T}_{p_{0}} f_{0}$ and $\mathrm{T}_{p_{1}} f_{1}$ are injective.

Finally, let us check that $f_{0} \times f_{1}$ is a topological embedding. We know that each map $\left.f_{i}\right|^{S_{i}}$ has a topological inverse $g_{i}: S_{i} \rightarrow L_{i}$. Thus the map $g_{0} \times g_{1}: S_{0} \times S_{1} \rightarrow L_{0} \rightarrow L_{1}$ is an inverse of $\left.\left(f_{0} \times f_{1}\right)\right|^{S_{0} \times S_{1}}$. This proves that $f_{0} \times f_{1}$ is an homeomorphism onto its image $S_{0} \times S_{1}$. We conclude that $f_{0} \times f_{1}$ is a \mathcal{C}^{r} embedding.

Exercise 6.3. (a) Show that a subset $S \subseteq \mathbb{R}^{n}$ is a \mathcal{C}^{r}-embedded k-submanifold if each point $x \in S$ has an open neighborhood W such that the set $S \cap W$ is the graph of a \mathcal{C}^{r} function that expresses some $n-k$ coordinates in terms of the remaining k coordinates. (More precisely, the function is of the form $f: U \subseteq \mathbb{R}^{I} \rightarrow \mathbb{R}^{I^{\prime}}$, where I is a k-element subset of $n:=\{0, \ldots, n-1\}, I^{\prime}$ is its complement, and $U \subseteq \mathbb{R}^{I}$ is an open set.)
Solution. Let $x \in S$. By hypothesis there exists a k-element set $I \subseteq\{0, \ldots, n-$ $1\}$ (we assume w.l.o.g. $I=\{0, \ldots, k-1\}$), an open set $W \subseteq \mathbb{R}^{n}$, an open set $U \subseteq \mathbb{R}^{I}$ and a \mathcal{C}^{r} function $f: U \rightarrow \mathbb{R}^{I^{\prime}}$ such that $S \cap W=$ Gra $_{f}$. Instead of the open set W, it is better to use the smaller open set $W^{\prime}=W \cap\left(U \times \mathbb{R}^{I^{\prime}}\right)$. Note that this set contains the graph of f, therefore we still have $S \cap W^{\prime}=$ Gra $_{f}$.

The set $S \cap W^{\prime}$ is the image of the map $g: U \rightarrow W^{\prime}: x \mapsto(x, f(x))$. This map is a \mathcal{C}^{r} embedding because it is \mathcal{C}^{r} and it admits a \mathcal{C}^{r} retraction $W^{\prime} \rightarrow U:(x, y) \mapsto x$. Therefore its image $\operatorname{Img}(g)=\operatorname{Gra}_{f}=S \cap W^{\prime}$ is an embedded submanifold of W^{\prime}. This proves that S fulfills the condition of being locally an embedded k-submanifold of \mathbb{R}^{n}. By a theorem of the course, we conclude that S is an embedded submanifold of \mathbb{R}^{n}.
(b) Let S be the set of real $m \times n$ matrices of rank k. Show that S is a smooth submanifold of $\mathbb{R}^{m \times n}$. What is its dimension ?
Hint: A rank- k matrix $A \in \mathbb{R}^{m \times n}$ has an invertible $k \times k$ submatrix $\left.A\right|_{I \times J}$ (where $I \subseteq m$, $J \subseteq n$ are k-element sets). Show that the coefficients $A_{i^{\prime}, j^{\prime}}$ with $i^{\prime} \notin I$ and $j^{\prime} \notin J$ can be expressed as a smooth function of the other coefficients of A.
Solution. For any pair of k-element sets $I \subseteq m, J \subseteq n$ we define an open set $U_{I, J} \subseteq \mathbb{R}^{m \times n}$ by
$U_{I, J}=\left\{A \in \mathbb{R}^{m \times n} \mid\right.$ the $k \times k$ matrix $\left.A\right|_{I \times J}$ is invertible $\}$,
where $\left.A\right|_{I \times J}=\left(a_{i, j}\right)_{i \in I, j \in J}$. Note that the sets $U_{I, J}$ cover S because every matrix of rank k has an invertible $k \times k$ submatrix.

Let us show that $S_{I, J}=S \cap U_{I, J}$ is the graph of a smooth function. For a matrix $A \in S_{I, J}$ we will show that the part $\left.A\right|_{I^{\prime} \times J^{\prime}}$ of the matrix can be expressed as a function of the remaining coefficients. (Recall that $I^{\prime} \subseteq m$ and $J^{\prime} \subseteq n$ are the complements of I and $\left.J\right)$.

Since the column space of A has dimension k, and the k columns $A_{*, j}$ with $j \in J$ are linearly independent (because the block $\left.A\right|_{I \times J}$ is invertible), these columns form a base of the column space. Hence any other column $A_{*, j^{\prime}}$, with $j^{\prime} \in J^{\prime}$, is a linear combination of the columns $A_{*, j}$ with $j \in J$. That is, we can write

$$
A_{*, j^{\prime}}=\sum_{j \in J} A_{*, j} x_{j, j^{\prime}}
$$

using some real coefficients $\left(x_{j, j^{\prime}}\right)_{j \in J, j^{\prime} \in J^{\prime}}$. Thus we have

$$
\begin{equation*}
A_{i, j^{\prime}}=\sum_{j \in J} A_{i, j} x_{j, j^{\prime}} \quad \text { for } i \in n \tag{1}
\end{equation*}
$$

Using these equations just for $i \in I$ we can find out the coefficients $x_{j, j^{\prime}}$ because the matrix $\left.A\right|_{I \times J}$ is invertible. Denote its inverse by $B=\left(B_{l, i}\right)_{l \in J, i \in I}$. (Note that B depends smoothly on A, this can be seen using the formula for the inverse matrix in terms of cofactors.) Multiplying equations (1) for $i \in I$ by the matrix B (that is, multiplying by the coefficient $B_{l, i}$ and summing over $i \in I$), we get

$$
\sum_{i \in I} B_{l, i} A_{i, j^{\prime}}=\sum_{i \in I} \sum_{j \in J} B_{l, i} A_{i, j} x_{j, j^{\prime}}=\sum_{j \in J} \delta_{l, j} x_{j, j^{\prime}}=x_{l, j^{\prime}} \quad \text { for } l \in J
$$

or, renaming,

$$
\sum_{i \in I} B_{j, i} A_{i, j^{\prime}}=x_{j, j^{\prime}} \quad \text { for } j \in J, j \in J^{\prime}
$$

Now that we know the value of the coefficients $x_{j, j^{\prime}}$ we can replace in equation (11), this time restricted to the remaining values of i, that is, for $i \in I^{\prime}$. Renaming the index i by i^{\prime}, we get

$$
A_{i^{\prime}, j^{\prime}}=\sum_{j \in J} A_{i^{\prime}, j} x_{j, j^{\prime}}=\sum_{j \in J} A_{i^{\prime}, j} \sum_{i \in I} B_{j, i} A_{i, j^{\prime}} \quad \text { for } i^{\prime} \in I^{\prime}, j^{\prime} \in J^{\prime}
$$

Since B depends smoothly on A, this last equation shows that the $(m-k)(n-$ k) coefficients $A_{i^{\prime}, j^{\prime}}$ with $i^{\prime} \in I^{\prime}, j^{\prime} \in J^{\prime}$ can be expressed as a smooth function of the remaining $k^{2}+(m-k) k+k(n-k)=k(m+n-k)$ coefficients. In summary, for each open set $U_{I, J}$, the set $S \cap U_{I, J}$ is the graph of the smooth function

$$
\begin{array}{rlc}
G L_{k} \times \mathbb{R}^{(m-k) \times k} \times \mathbb{R}^{k \times(n-k)} & \rightarrow & \mathbb{R}^{(m-k) \times(n-k)} \\
\left(\left.A\right|_{I \times J},\left.A\right|_{I^{\prime} \times J},\left.A\right|_{I \times J^{\prime}}\right) & \mapsto & \left(\sum_{j \in J} \sum_{i \in I} A_{i^{\prime}, j} B_{j, i} A_{i, j^{\prime}}\right)_{i^{\prime} \in I^{\prime}, j^{\prime} \in J^{\prime}}
\end{array}
$$

where B is the inverse of $\left.A\right|_{I \times J}$. Therefore S is a smoothly embedded $k(m+$ $n-k)$-submanifold of $\mathbb{R}^{m \times n}$.

Exercise 6.4. * If M is connected and $f: M \rightarrow M$ is an idempotent \mathcal{C}^{k} map ("idempotent" means that $f \circ f=f$), then $f(M)$ is an embedded submanifold of M. Hint: Show that f has constant rank. Use what you know about a linear projector $P: V \rightarrow V$ and the complementary projector $\mathrm{id}_{V}-P$.

Solution. Unfortunately the place where this exercise was taken from has an incomplete solution, thus we will not follow the hint. We will give a more complicated solution that is suggested in https://mathoverflow.net/questions/162552/ idempotents-split-in-category-of-smooth-manifolds/162556\#162556.

We first record some facts that do not involve differentiability.
Lemma. If X is a topological space and $f: X \rightarrow X$ is an idempotent continuous map, then:
(a) The image $f(X)$ is the set of fixed points fix $(X)=\{x \in X: f(x)=x\}$.
(b) In consequence, the image $f(X)$ is a closed subset of X.
(c) If X is connected, then $f(X)$ is connected.
(d) Every open neighborhood U of a point $p \in f(X)$ contains a smaller open neighborhood U^{\prime} of p that is invariant by f, i.e. $f\left(U^{\prime}\right) \subseteq U^{\prime}$.

Proof. ?? If $y \in f(X)$, we can write $y=f(x)$ for some $x \in X$, therefore $f(y)=$ $f(f(x))=f(x)=y$, thus $y \in \operatorname{fix}(f)$. Reciprocally, if $x \in \operatorname{fix}(f)$, then $f(x)=x$ and it is clear that $x \in f(X)$.
?? follows from ?? since the equation $f(x)=x$ define a closed subset of M.
?? is a general property of continuous maps.
?? We define $U^{\prime}=U \cap f^{-1}(U)$. We claim that U^{\prime} is invariant by f. Indeed, take any point $x \in U^{\prime}$. This means that both x and $f(x)$ are in U. Then the point $y=f(x)$ is in U^{\prime} because both y and $f(y)=f(f(x))=f(x)=y$ are in U.

Now we solve the following local version of the problem.
Proposition. If $M \subseteq \mathbb{R}^{n}$ is an open set and $f: M \rightarrow M$ is an idempotent \mathcal{C}^{r} map, then each point $p \in f(M)$ has an open neighborhood U such that $f(M) \cap U$ is a \mathcal{C}^{r}-embedded submanifold of U of dimension $k=\operatorname{rank}_{p}(f)$.

Proof. For a point $p \in f(M)$, the tangent operator $\mathrm{T}_{p} f$ is a linear endomorphism of $\mathrm{T}_{p} M=\mathbb{R}^{n}$ which satisfies

$$
\mathrm{T}_{p} f=\mathrm{T}_{p}(f \circ f)=\mathrm{T}_{p} f \circ \mathrm{~T}_{p} f
$$

Thus $\mathrm{T}_{p} f$ is a linear projector in \mathbb{R}^{n}, and its image and kernel are complementary subspaces of \mathbb{R}^{n} of dimensions k and $k^{\prime}=n-k$.

Let $\pi=\mathrm{id}_{\mathbb{R}}^{n}-\mathrm{T}_{p} f$ be the complementary projector of $\mathrm{T}_{p} f$. (Check that π is also a linear projector and has $\operatorname{Ker}(\pi)=\operatorname{Img}\left(\mathrm{T}_{p} f\right)$ and $\operatorname{Img}(\pi)=\operatorname{Ker}\left(\mathrm{T}_{p} f\right)$.)

We may assume w.l.o.g that $\operatorname{Ker} \mathrm{T}_{p} f=\mathbb{R}^{k^{\prime}}$ and we consider π as a map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{k^{\prime}}$.
We define a map $g: M \rightarrow \mathbb{R}^{k^{\prime}}$ that sends $x \mapsto \pi(x-f(x))$.
Note that $\mathrm{T}_{p} g=\pi \circ\left(\mathrm{T}_{p} f-\mathrm{id}_{\mathbb{R}^{n}}\right)=\pi \circ \pi=\pi$. Therefore g has rank k^{\prime} and hence there is an open neighborhood W of p such that $\left.g\right|_{W}: W \rightarrow \mathbb{R}^{k^{\prime}}$ is a submersion. By the Lemma, we may assume that W is invariant by f.

By the regular preimage theorem, the set

$$
S=\{q \in W: g(q)=0\}=\left(\left.g\right|_{W}\right)^{-1}(0),
$$

is a k-submanifold of W.
Note that $f(M) \cap W=\operatorname{fix}\left(\left.f\right|_{W}\right)$ is contained in S. However, it is not clear that all points of S are in $f(M)$.

Now, consider the \mathcal{C}^{r} map $\left.f\right|_{W} ^{S}: W \rightarrow S$. Since f has rank k at p, and $\operatorname{dim} S=k$, we see that $f(W)$ contains an open neighborhood V^{\prime} of p in S. We write $V^{\prime}=V \cap S$, where V is an open set of M.

Let $U=W \cap V$. We claim that $f(M) \cap U$ is an embedded k-submanifold of U. In fact $f(M) \cap U=V^{\prime}$. Indeed, if $x \in V^{\prime}=V \cap S$, then $x \in f(W)$ (by definition of V^{\prime}) and it follows that $x \in W$, thus $x \in U=V \cap W$. We conclude that $x \in f(W) \cap U$. Reciprocally, if $x \in f(M) \cap U=f(M) \cap W \cap V$, we see that x is fixed by f, and also $x \in W$, so it follows that $x \in \operatorname{fix}\left(\left.f\right|_{W}\right) \subseteq S$, thus $x \in S \cap V=V^{\prime}$. This shows that $f(M) \cap U$ coincides with V^{\prime}, which is an open subset of S, which in turn is an embedded k-submanifold of W. Thus $f(M) \cap U$ is an embedded k-submanifold of U.

Now we can solve the original problem. Let $f: M \rightarrow M$ be an idempotent \mathcal{C}^{r} map, where M is a connected \mathcal{C}^{r} manifold. We will show that $f(M)=\operatorname{fix}(f)$ is an embedded submanifold of M.

We first note that the Proposition holds for the manifold M even though M is not an open subset of \mathbb{R}^{n}.

Claim. Each point $p \in \operatorname{fix}(f)=f(M)$ has an open neighborhood U in M such that fix $(f) \cap U$ is an embedded submanifold of U of dimension $k_{p}=\operatorname{rank}_{p} f$.

Proof. Proof: Take a chart (V, ϕ) that is defined at p. By the Lemma, we may assume that its domain V is f-invariant. Therefore the map $\left.f\right|_{V} ^{V}$ is an idempotent map $V \rightarrow V$. It follows that the local expression $\widetilde{f}=\phi \circ f \circ \phi^{-1}$ is an idempotent \mathcal{C}^{r} map of the open set $\widetilde{V}=\phi(V) \subseteq \mathbb{R}^{n}$. In addition, the point $\widetilde{p}=\phi(p)$ is fixed by \widetilde{f}. By the Proposition, there is an open neighborhood \widetilde{U} of \widetilde{p} in \widetilde{V} such that $\operatorname{fix}(\widetilde{f}) \cap \widetilde{U}$ is a k_{p}-submanifold of \widetilde{U}. Applying the diffeomorphism ϕ^{-1}, we get an open subset $U=\phi^{-1}(\widetilde{U})$ of M such that fix $(f) \cap U$ is a k_{p}-submanifold of U.

To finish showing that fix (f) is an embedded submanifold of M, we must show that the function $p \mapsto k_{p}=\operatorname{rank}_{p} f$ is constant throughout $f(M)$. Since fix $(f)=f(M)$ is connected, it suffices to show that k_{p} is locally constant. But this follows from the claim. Indeed, if $p \in \operatorname{fix}(f)$ and U_{p} is an open neighborhood of p such that fix $(f) \cap U_{p}$ is a k_{p}-submanifold of U_{p}, then for any point $q \in \operatorname{fix}(f) \cap U_{p}$ we have $k_{q}=k_{p}$, because applying the claim again we get an open set U_{q} such that $\operatorname{fix}(f) \cap U_{q}$ is a k_{q} submanifold, and then $\operatorname{fix}(f) \cap U_{q} \cap U_{p}$ is a submanifold of dimensions k_{p} and k_{q} at the same time. This manifold is nonempty because it contains the point q, therefore $k_{p}=k_{q}$.

