Introduction to Differentiable Manifolds	
$EPFL - Fall \ 2021$	M. Cossarini, B. Santos Correia
Solutions Series 6 - Submanifolds (more!)	2021 – 11 – 20

Exercise 6.1. (a) If $f: M \to N$ is an immersion, show that a continuous map $h: L \to M$ is \mathcal{C}^k if the composite $f \circ h$ is \mathcal{C}^k .

Solution. This is called the *initial property* of immersions; it is now included in Section 3.3 of the lecture notes. \Box

(b) If $f: M \to N$ is an embedding, show that a function $h: M \to L$ is \mathcal{C}^k if the composite $f \circ h$ is \mathcal{C}^k .

Solution. This is the initial property of embeddings, also proved in Section 3.3 of the notes. $\hfill \Box$

(c) If $f_0: M_0 \to N$ and $f_1: M_1 \to N$ are \mathcal{C}^k embeddings with the same image, show that there is a diffeomorphism $h: M_0 \to M_1$ such that $f_1 \circ h = f_0$.

Solution. Define the bijection $h = f_1^{-1} \circ f_0 : M_0 \to M_1$. The composite $f_1 \circ h = f_0$ is \mathcal{C}^k , and since the map f_1 has the initial property because it is an embedding, it follows that h is \mathcal{C}^k . The inverse of h is the map $h^{-1} = f_0^{-1} \circ f_1$ and it is \mathcal{C}^k by the same argument. Therefore h is a diffeomorphism. \Box

Exercise 6.2. If S_0 , S_1 are \mathcal{C}^r -embedded submanifolds of M_0 , M_1 respectively, then $S_0 \times S_1$ is a \mathcal{C}^r -embedded submanifold of $M_0 \times M_1$.

Solution. By hypothesis there exists embeddings $f_0: L_0 \to M_0$ and $f_1: L_1 \to M_1$ whose images are S_0 and S_1 respectively. The set $S_0 \times S_1$ is the image of the \mathcal{C}^r map $f_0 \times f_1: L_0 \times L_1 \to M_0 \times M_1$ that sends $(p_0, p_1) \mapsto (f_0(p_0), f_1(p_1))$. Thus it suffices to prove that $f_0 \times f_1$ is a \mathcal{C}^r embedding.

We check first that $f_0 \times f_1$ is an immersion. For this, note that for each point $p = (p_0, p_1)$ the tangent transformation $T_p f_0 \times f_1$ sends $(v_0, v_1) \mapsto (T_{p_0} f_0(v_0), T_{p_1} f_1(v_1))$. (Here we are using the identification $T_{p_0,p_1}(L_0 \times L_1) \equiv T_{p_0}L_0 \times T_{p_1}L_1$.) This transformation is injective since both $T_{p_0} f_0$ and $T_{p_1} f_1$ are injective.

Finally, let us check that $f_0 \times f_1$ is a topological embedding. We know that each map $f_i|_{S_i}^{S_i}$ has a topological inverse $g_i : S_i \to L_i$. Thus the map $g_0 \times g_1 : S_0 \times S_1 \to L_0 \to L_1$ is an inverse of $(f_0 \times f_1)|_{S_0 \times S_1}^{S_0 \times S_1}$. This proves that $f_0 \times f_1$ is an homeomorphism onto its image $S_0 \times S_1$. We conclude that $f_0 \times f_1$ is a C^r embedding. \Box

Exercise 6.3. (a) Show that a subset $S \subseteq \mathbb{R}^n$ is a \mathcal{C}^r -embedded k-submanifold if each point $x \in S$ has an open neighborhood W such that the set $S \cap W$ is the graph of a \mathcal{C}^r function that expresses some n - k coordinates in terms of the remaining k coordinates. (More precisely, the function is of the form $f: U \subseteq \mathbb{R}^I \to \mathbb{R}^{I'}$, where I is a k-element subset of $n := \{0, \ldots, n-1\}, I'$ is its complement, and $U \subseteq \mathbb{R}^I$ is an open set.)

Solution. Let $x \in S$. By hypothesis there exists a k-element set $I \subseteq \{0, \ldots, n-1\}$ (we assume w.l.o.g. $I = \{0, \ldots, k-1\}$), an open set $W \subseteq \mathbb{R}^n$, an open set $U \subseteq \mathbb{R}^I$ and a \mathcal{C}^r function $f: U \to \mathbb{R}^{I'}$ such that $S \cap W = \operatorname{Gra}_f$. Instead of the open set W, it is better to use the smaller open set $W' = W \cap (U \times \mathbb{R}^{I'})$. Note that this set contains the graph of f, therefore we still have $S \cap W' = \operatorname{Gra}_f$.

The set $S \cap W'$ is the image of the map $g : U \to W' : x \mapsto (x, f(x))$. This map is a \mathcal{C}^r embedding because it is \mathcal{C}^r and it admits a \mathcal{C}^r retraction $W' \to U : (x, y) \mapsto x$. Therefore its image $\operatorname{Img}(g) = \operatorname{Gra}_f = S \cap W'$ is an embedded submanifold of W'. This proves that S fulfills the condition of being locally an embedded k-submanifold of \mathbb{R}^n . By a theorem of the course, we conclude that S is an embedded submanifold of \mathbb{R}^n . \Box (b) Let S be the set of real $m \times n$ matrices of rank k. Show that S is a smooth submanifold of $\mathbb{R}^{m \times n}$. What is its dimension ?

Hint: A rank-k matrix $A \in \mathbb{R}^{m \times n}$ has an invertible $k \times k$ submatrix $A|_{I \times J}$ (where $I \subseteq m$, $J \subseteq n$ are k-element sets). Show that the coefficients $A_{i',j'}$ with $i' \notin I$ and $j' \notin J$ can be expressed as a smooth function of the other coefficients of A.

Solution. For any pair of k-element sets $I \subseteq m$, $J \subseteq n$ we define an open set $U_{I,J} \subseteq \mathbb{R}^{m \times n}$ by

$$U_{I,J} = \{ A \in \mathbb{R}^{m \times n} \mid \text{the } k \times k \text{ matrix } A |_{I \times J} \text{ is invertible} \},\$$

where $A|_{I \times J} = (a_{i,j})_{i \in I, j \in J}$. Note that the sets $U_{I,J}$ cover S because every matrix of rank k has an invertible $k \times k$ submatrix.

Let us show that $S_{I,J} = S \cap U_{I,J}$ is the graph of a smooth function. For a matrix $A \in S_{I,J}$ we will show that the part $A|_{I' \times J'}$ of the matrix can be expressed as a function of the remaining coefficients. (Recall that $I' \subseteq m$ and $J' \subseteq n$ are the complements of I and J).

Since the column space of A has dimension k, and the k columns $A_{*,j}$ with $j \in J$ are linearly independent (because the block $A|_{I \times J}$ is invertible), these columns form a base of the column space. Hence any other column $A_{*,j'}$, with $j' \in J'$, is a linear combination of the columns $A_{*,j}$ with $j \in J$. That is, we can write

$$A_{*,j'} = \sum_{j \in J} A_{*,j} \, x_{j,j'},$$

using some real coefficients $(x_{j,j'})_{j \in J, j' \in J'}$. Thus we have

$$A_{i,j'} = \sum_{j \in J} A_{i,j} x_{j,j'} \quad \text{for } i \in n.$$

$$\tag{1}$$

Using these equations just for $i \in I$ we can find out the coefficients $x_{j,j'}$ because the matrix $A|_{I \times J}$ is invertible. Denote its inverse by $B = (B_{l,i})_{l \in J, i \in I}$. (Note that B depends smoothly on A, this can be seen using the formula for the inverse matrix in terms of cofactors.) Multiplying equations (1) for $i \in I$ by the matrix B (that is, multiplying by the coefficient $B_{l,i}$ and summing over $i \in I$), we get

$$\sum_{i \in I} B_{l,i} A_{i,j'} = \sum_{i \in I} \sum_{j \in J} B_{l,i} A_{i,j} x_{j,j'} = \sum_{j \in J} \delta_{l,j} x_{j,j'} = x_{l,j'} \quad \text{for } l \in J,$$

or, renaming,

$$\sum_{i \in I} B_{j,i} A_{i,j'} = x_{j,j'} \quad \text{ for } j \in J, \ j \in J'$$

Now that we know the value of the coefficients $x_{j,j'}$ we can replace in equation (1), this time restricted to the remaining values of i, that is, for $i \in I'$. Renaming the index i by i', we get

$$A_{i',j'} = \sum_{j \in J} A_{i',j} \, x_{j,j'} = \sum_{j \in J} A_{i',j} \sum_{i \in I} B_{j,i} \, A_{i,j'} \quad \text{for } i' \in I', \, j' \in J'.$$

Since B depends smoothly on A, this last equation shows that the (m-k)(n-k) coefficients $A_{i',j'}$ with $i' \in I'$, $j' \in J'$ can be expressed as a smooth function of the remaining $k^2 + (m-k)k + k(n-k) = k(m+n-k)$ coefficients. In summary, for each open set $U_{I,J}$, the set $S \cap U_{I,J}$ is the graph of the smooth function

$$\begin{array}{rcl} GL_k \times \mathbb{R}^{(m-k) \times k} \times \mathbb{R}^{k \times (n-k)} & \to & \mathbb{R}^{(m-k) \times (n-k)} \\ (A|_{I \times J}, A|_{I' \times J}, A|_{I \times J'}) & \mapsto & (\sum_{j \in J} \sum_{i \in I} A_{i',j} B_{j,i} A_{i,j'})_{i' \in I', j' \in J'} \end{array}$$

where B is the inverse of $A|_{I \times J}$. Therefore S is a smoothly embedded k(m + n - k)-submanifold of $\mathbb{R}^{m \times n}$.

Exercise 6.4. * If M is connected and $f : M \to M$ is an idempotent \mathcal{C}^k map ("idempotent" means that $f \circ f = f$), then f(M) is an embedded submanifold of M. *Hint:* Show that f has constant rank. Use what you know about a linear projector $P: V \to V$ and the complementary projector $id_V - P$.

Solution. Unfortunately the place where this exercise was taken from has an incomplete solution, thus we will not follow the hint. We will give a more complicated solution that is suggested in https://mathoverflow.net/questions/162552/ idempotents-split-in-category-of-smooth-manifolds/162556#162556.

We first record some facts that do not involve differentiability.

Lemma. If X is a topological space and $f : X \to X$ is an idempotent continuous map, then:

- (a) The image f(X) is the set of fixed points $fix(X) = \{x \in X : f(x) = x\}$.
- (b) In consequence, the image f(X) is a closed subset of X.
- (c) If X is connected, then f(X) is connected.
- (d) Every open neighborhood U of a point $p \in f(X)$ contains a smaller open neighborhood U' of p that is invariant by f, i.e. $f(U') \subseteq U'$.

Proof. ?? If $y \in f(X)$, we can write y = f(x) for some $x \in X$, therefore f(y) = f(f(x)) = f(x) = y, thus $y \in \text{fix}(f)$. Reciprocally, if $x \in \text{fix}(f)$, then f(x) = x and it is clear that $x \in f(X)$.

?? follows from ?? since the equation f(x) = x define a closed subset of M.

?? is a general property of continuous maps.

?? We define $U' = U \cap f^{-1}(U)$. We claim that U' is invariant by f. Indeed, take any point $x \in U'$. This means that both x and f(x) are in U. Then the point y = f(x) is in U' because both y and f(y) = f(f(x)) = f(x) = y are in U. \Box

Now we solve the following local version of the problem.

Proposition. If $M \subseteq \mathbb{R}^n$ is an open set and $f: M \to M$ is an idempotent \mathcal{C}^r map, then each point $p \in f(M)$ has an open neighborhood U such that $f(M) \cap U$ is a \mathcal{C}^r -embedded submanifold of U of dimension $k = \operatorname{rank}_p(f)$.

Proof. For a point $p \in f(M)$, the tangent operator $T_p f$ is a linear endomorphism of $T_p M = \mathbb{R}^n$ which satisfies

$$\mathbf{T}_p f = \mathbf{T}_p (f \circ f) = \mathbf{T}_p f \circ \mathbf{T}_p f.$$

Thus $T_p f$ is a linear projector in \mathbb{R}^n , and its image and kernel are complementary subspaces of \mathbb{R}^n of dimensions k and k' = n - k.

Let $\pi = \mathrm{id}_{\mathbb{R}}^n - \mathrm{T}_p f$ be the complementary projector of $\mathrm{T}_p f$. (Check that π is also a linear projector and has $\mathrm{Ker}(\pi) = \mathrm{Img}(\mathrm{T}_p f)$ and $\mathrm{Img}(\pi) = \mathrm{Ker}(\mathrm{T}_p f)$.)

We may assume w.l.o.g that Ker $T_p f = \mathbb{R}^{k'}$ and we consider π as a map $\mathbb{R}^n \to \mathbb{R}^{k'}$. We define a map $g: M \to \mathbb{R}^{k'}$ that sends $x \mapsto \pi(x - f(x))$.

Note that $T_pg = \pi \circ (T_pf - \mathrm{id}_{\mathbb{R}^n}) = \pi \circ \pi = \pi$. Therefore g has rank k' and hence there is an open neighborhood W of p such that $g|_W : W \to \mathbb{R}^{k'}$ is a submersion. By the Lemma, we may assume that W is invariant by f.

By the regular preimage theorem, the set

$$S = \{q \in W : g(q) = 0\} = (g|_W)^{-1}(0),$$

is a k-submanifold of W.

Note that $f(M) \cap W = \text{fix}(f|_W)$ is contained in S. However, it is not clear that all points of S are in f(M).

Now, consider the C^r map $f|_W^S : W \to S$. Since f has rank k at p, and dim S = k, we see that f(W) contains an open neighborhood V' of p in S. We write $V' = V \cap S$, where V is an open set of M.

Let $U = W \cap V$. We claim that $f(M) \cap U$ is an embedded k-submanifold of U. In fact $f(M) \cap U = V'$. Indeed, if $x \in V' = V \cap S$, then $x \in f(W)$ (by definition of V') and it follows that $x \in W$, thus $x \in U = V \cap W$. We conclude that $x \in f(W) \cap U$. Reciprocally, if $x \in f(M) \cap U = f(M) \cap W \cap V$, we see that x is fixed by f, and also $x \in W$, so it follows that $x \in fix(f|_W) \subseteq S$, thus $x \in S \cap V = V'$. This shows that $f(M) \cap U$ coincides with V', which is an open subset of S, which in turn is an embedded k-submanifold of W. Thus $f(M) \cap U$ is an embedded k-submanifold of U.

Now we can solve the original problem. Let $f: M \to M$ be an idempotent \mathcal{C}^r map, where M is a connected \mathcal{C}^r manifold. We will show that $f(M) = \operatorname{fix}(f)$ is an embedded submanifold of M.

We first note that the Proposition holds for the manifold M even though M is not an open subset of \mathbb{R}^n .

Claim. Each point $p \in \text{fix}(f) = f(M)$ has an open neighborhood U in M such that $\text{fix}(f) \cap U$ is an embedded submanifold of U of dimension $k_p = \text{rank}_p f$.

Proof. Proof: Take a chart (V, ϕ) that is defined at p. By the Lemma, we may assume that its domain V is f-invariant. Therefore the map $f|_{V}^{V}$ is an idempotent map $V \to V$. It follows that the local expression $\tilde{f} = \phi \circ f \circ \phi^{-1}$ is an idempotent \mathcal{C}^{r} map of the open set $\tilde{V} = \phi(V) \subseteq \mathbb{R}^{n}$. In addition, the point $\tilde{p} = \phi(p)$ is fixed by \tilde{f} . By the Proposition, there is an open neighborhood \tilde{U} of \tilde{p} in \tilde{V} such that $\operatorname{fix}(\tilde{f}) \cap \tilde{U}$ is a k_{p} -submanifold of \tilde{U} . Applying the diffeomorphism ϕ^{-1} , we get an open subset $U = \phi^{-1}(\tilde{U})$ of M such that $\operatorname{fix}(f) \cap U$ is a k_{p} -submanifold of U.

To finish showing that $\operatorname{fix}(f)$ is an embedded submanifold of M, we must show that the function $p \mapsto k_p = \operatorname{rank}_p f$ is constant throughout f(M). Since $\operatorname{fix}(f) = f(M)$ is connected, it suffices to show that k_p is locally constant. But this follows from the claim. Indeed, if $p \in \operatorname{fix}(f)$ and U_p is an open neighborhood of p such that $\operatorname{fix}(f) \cap U_p$ is a k_p -submanifold of U_p , then for any point $q \in \operatorname{fix}(f) \cap U_p$ we have $k_q = k_p$, because applying the claim again we get an open set U_q such that $\operatorname{fix}(f) \cap U_q$ is a k_q submanifold, and then $\operatorname{fix}(f) \cap U_q \cap U_p$ is a submanifold of dimensions k_p and k_q at the same time. This manifold is nonempty because it contains the point q, therefore $k_p = k_q$.