Exercise 7.1 (Trivial vector bundles). .
(a) (\Rightarrow) Show that a vector bundle is trivial if and only if it has a global frame.

Solution. Let E be a trivial vector bundle with projection $\pi: E \rightarrow M$. By definition, there exists an isomorphism of smooth vector bundles $\phi: E \rightarrow$ $M \times \mathbb{R}^{k}$, where $M \times \mathbb{R}^{k}$ is the trivial bundle. For the latter we can construct smooth sections $\sigma_{i}^{\prime}: M \rightarrow M \times \mathbb{R}^{k}$ by setting $\sigma_{i}^{\prime}(p):=\left(p, e_{i}\right)$, for $i=1, \ldots, k$, where $\left(e_{1}, \ldots, e_{k}\right)$ is the standard basis of \mathbb{R}^{k}. Then $\sigma^{\prime}=\left(\sigma_{1}^{\prime}, \ldots, \sigma_{k}^{\prime}\right)$ is a global frame for $M \times \mathbb{R}^{k}$. Let's define $\sigma_{i}: M \rightarrow E: p \rightarrow \phi^{-1}\left(\sigma_{i}^{\prime}(p)\right)$. These are smooth sections because ϕ is an isomorphism of smooth vector bundles. Moreover, for any $p \in M$, we know $\left.\phi\right|_{E_{p}}: E_{p} \rightarrow\{p\} \times \mathbb{R}^{k}$ is a bijective linear map, hence we can conclude that $\left\{\sigma_{i}(p)\right\}_{i}$ forms a basis for E_{p} as $\left\{\sigma_{i}^{\prime}(p)\right\}_{i}$ forms a basis for $\{p\} \times \mathbb{R}^{k}$. Thus $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ is a global frame for (E, π).
(\Leftarrow) Conversely, suppose we have a global frame $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ for a smooth vector bundle (E, π) where $\pi: E \rightarrow M$. We know that $\forall p \in M$, the vectors $\sigma_{i}(p)$ form a basis of E_{p}. We define a map $\Psi: M \times \mathbb{R}^{k} \rightarrow E:(p, v) \mapsto$ $X=\sum_{i=1}^{k} v^{i} \sigma_{i}(p)$. Note that $\pi^{\prime}=\pi \circ \Psi$ where $\pi^{\prime}: M \times \mathbb{R}^{k} \rightarrow M:(p, v) \mapsto p$ is the standard projection.

We claim that Ψ is a vector bundle isomorphism.
Note that for each point $p \in M$, the function $\Psi_{p}: \mathbb{R}^{k} \rightarrow E_{p}$ sends $v \mapsto$ $\sum_{i} \sigma_{i}(p)$ is a linear isomorphism because the vectors $\sigma_{i}(p)$ form a basis of $\mathrm{T}_{p} M$. Therefore Ψ is bijective. The inverse map Ψ^{-1} restricts to a linear isomorphism $\Psi_{p}^{-1}: E_{p} \rightarrow \mathbb{R}^{k}$. Thus it suffices to prove that both Ψ and Ψ^{-1} are smooth to conclude that Ψ is an isomorphism of vector bundles.

In fact, since as we said Ψ is bijective, it suffices to prove that Ψ is a local diffeo (this will imply that it is open, hence a homeo, and clearly a homeo + local diffeo is a diffeo).

Thus to finish we will prove the following:
Claim: For any local trivialization $\phi: \pi^{-1} U \rightarrow U \times \mathbb{R}^{k}$ (where $U \subseteq M$ is an open set), the restricted bijection

$$
\Phi_{U}:=\left.\Phi\right|_{U \times \mathbb{R}^{k}}: U \times \mathbb{R}^{k} \rightarrow \pi^{-1} U
$$

is a diffeo.
Proof of claim: Since ϕ is a diffeo, it suffices to show that the composite map $\phi \circ \Psi_{U}: U \times \mathbb{R}^{k} \rightarrow U \times \mathbb{R}^{k}$ is a diffeo. This map $\phi \circ \Psi_{U}$ sends

$$
(p, v) \mapsto \phi\left(\sum_{i} v^{i} \sigma_{i}(p)\right)=\left(p, \sum_{i} v^{i} \widetilde{\sigma}_{i}(p)\right)
$$

where $\widetilde{\sigma}_{i}=\pi_{1} \circ \phi \circ \sigma_{i}: U \rightarrow \mathbb{R}^{k}$, where in turn $\pi_{1}: U \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}:(x, v) \mapsto v$ is the projection. This expression shows that $\phi \circ \Phi_{U}$ is smooth and that its differential is

$$
\mathrm{D}_{p, v}\left(\phi \circ \Phi_{U}\right)(a, b)=\left(a, \sum_{i} b^{i} \widetilde{\sigma}_{i}+\mathrm{D}_{p} \widetilde{\sigma}_{i}(b)\right.
$$

This linear transformation is represented by a matrix $\left(\begin{array}{cc}\mathrm{id}_{T_{p} U} & 0 \\ * & A_{p}\end{array}\right)$ where A_{p} is a matrix whose columns are the vectors $\widetilde{\sigma}_{i}(p)$. This matrix is invertible, hence the bijection $\phi \circ \Phi_{U}$ is a local diffeo, hence it is a diffeo.
(b) Show that the vector bundle TS^{1} is trivial.

Solution. Since \mathbb{S}^{1} is diffeomorphic to \mathbb{T}^{1}, it suffices to show that the tangent bundle of the n-torus \mathbb{T}^{n} is trivial.

We denote $\kappa: \mathbb{R}^{n} \rightarrow \mathbb{T}^{n}$ the quotient map, since the letter π is now used for the projection $\pi: \mathrm{TT}^{n} \rightarrow \mathbb{T}^{n}$.

Recall that there is an inverse atlas of \mathbb{T}^{n} consisting of the parametrizations $\phi=\left.\kappa\right|_{\widetilde{U}}: \widetilde{U} \rightarrow U \subseteq \mathbb{T}^{n}$, where $\widetilde{U} \subseteq \mathbb{R}^{n}$ is any open set where κ is injective and $U=\kappa(\widetilde{U})$.

Each such parametrization ϕ of \mathbb{T}^{n} induces a parametrization $\Phi: \widetilde{U} \times \mathbb{R}^{n} \rightarrow$ $\pi^{-1} U$ of TT^{n} that sends $(x, v) \mapsto\left(\phi_{\widetilde{U}}(x),\left.\sum_{i} v^{i} \frac{\partial}{\partial\left(\phi^{-1}\right)^{2}}\right|_{p}\right)$. Note here that ϕ^{-1} is a chart of \mathbb{T}^{n}. The parametrizations Φ of this kind form an atlas of TT^{n}, which defines the smooth structure on TT^{n}.

We define a frame of $T \mathbb{T}^{n}$ consisting of n vector fields E^{i} defined as follows. For each parametrization $\phi: \widetilde{U} \rightarrow U$ as above, we let

$$
E^{i}(p)=\Phi\left(\phi^{-1}(p), e_{i}\right) \quad \text { for all } p \in U
$$

This formula defines $\left.E^{i}\right|_{U}$. Let us check that E^{i} is well defined (i.e. that the formula agrees on an intersection $U \cap V$ of images of two parametrizations $\phi: \widetilde{U} \rightarrow U, \psi: \widetilde{V} \rightarrow V$. For this, recall that the transition map $\psi^{-1} \circ \phi$ between the parametrizations ϕ, ψ of \mathbb{T}^{n} is locally a translation. Therefore the transition map between the parametrizations Φ, Ψ of TT^{n} is

$$
\Psi^{-1} \circ \Phi(x, v)=\left(\psi^{-1} \circ \phi(x), \mathrm{D}_{\phi(x)}\left(\psi^{-1} \circ \phi\right)(v)\right)=\left(\psi^{-1} \circ \phi(x), v\right)
$$

since the differential of a translation is the identity map. Equivalently, we have $\Phi(x, v)=\Psi(y, v)$ if $\phi(x)=\psi(y)$. In particular, for a point $x \in U \cap V$, putting $x=\phi^{-1}(p)$ and $y=\psi^{-1}(p)$, we have

$$
\Phi\left(\phi^{-1}(p), e_{i}\right)=\Phi(x, y)=\Psi\left(y, e_{i}\right)=\Psi\left(\psi^{-1}(p), e_{i}\right),
$$

as needed to show that E_{i} is well defined.
The vector fields E^{i} are clearly smooth because they are smooth on each open set U as above, since the maps Φ and ϕ^{-1} are smooth. The vector fields E^{i} are also linearly independent at each point $p=\phi(x) \in \mathbb{T}^{n}$, since the vectors e_{i} are linearly independent. Therefore the vectors E_{i} constitute a frame of $T T T^{n}$, defined globally (i.e. on the whole torus \mathbb{T}^{n}). We conclude that that the tangent bundle TT^{n} is trivial.

Exercise 7.2 (Properties of smooth vector fields). Let M be a smooth manifold and let $X: M \rightarrow T M$ be a vector field. Show that the following are equivalent:
(a) X is a smooth vector field.
(b) The component functions of X are smooth with respect to all charts of one particular smooth atlas of M.
(c) For any smooth function $f: U \rightarrow \mathbb{R}$ on an open set $U \subset M$, the function $X f: U \rightarrow \mathbb{R}$ defined by $X f(p):=X_{p}(f)$ is smooth.

Solution. Let (M, \mathcal{A}) be a smooth manifold and X a vector field. Recall that we say that X is a smooth vector field if the component functions of X are smooth for any chart $(U, \varphi) \in \mathcal{A}$. The component functions w.r.t (U, φ) were defined as the functions $X^{i}: U \rightarrow \mathbb{R}$ such that

$$
X_{p}=\left.\sum_{i} X^{i}(p) \frac{\partial}{\partial \varphi^{i}}\right|_{p}, \quad p \in U .
$$

$(a) \Rightarrow(b)$ is clear.
$(b) \Rightarrow(a)$ Let $\mathcal{A}^{\prime} \subset \mathcal{A}$ and suppose the component functions are smooth wrt all $(U, \varphi) \in \mathcal{A}^{\prime}$. Let $(V, \psi) \in \mathcal{A}$. We write

$$
X_{p}=\left.\sum_{i} \widetilde{X}^{i}(p) \frac{\partial}{\partial \psi^{i}}\right|_{p}, \quad p \in V
$$

where \widetilde{X}^{i} are the component functions of X wrt (V, ψ). To show that the \widetilde{X}^{i} are smooth on V it suffices to show that they are smooth in a neighborhood of every point of V. So let $p \in V$, let $(U, \varphi) \in \mathcal{A}^{\prime}$ be a chart containing p and let X^{i} be the component functions of X wrt (U, φ). Then from the change of coordinates formula it follows that (Exercise 3.iii from last week)

$$
\widetilde{X}^{i}(q)=\sum_{j}\left(\left.\frac{\partial}{\partial \varphi^{j}}\right|_{q} \psi^{i}\right) X^{j}(q), \quad q \in U \cap V
$$

and we conclude that \widetilde{X}^{i} is smooth on $U \cap V, i=1, \ldots, n$.
$(c) \Rightarrow(a)$ Let $(U, \varphi) \in \mathcal{A}$. Applying X to one of the components of φ yields $X \varphi^{i}=X^{i}$, which is smooth by hypothesis, i.e. the component functions of X wrt (U, φ) are smooth.
$(a) \Rightarrow(c)$ Conversely, suppose X is a smooth vector field, let $f \in \mathcal{C}^{\infty}(U)$ for an open set $U \subset M$. To check that $X f$ is smooth, it suffices to check that it is smooth in a neighborhood of every point of U. Given $p \in U$, let (W, φ) be a smooth chart containing p and satisfying $W \subset U$. Then on W we can write

$$
X f(q)=\left.\sum_{i} X^{i}(q) \frac{\partial}{\partial \varphi^{i}}\right|_{q} f
$$

Then $X f$ is smooth on W since the component function of X are smooth by hypothesis and f is smooth (so in particular $\left.\frac{\partial}{\partial \varphi^{i}}\right|_{q} f=\left.\frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial x^{i}}\right|_{\varphi(q)}$ is smooth as a function of $q \in W)$.

Exercise 7.3 (Vector field on S^{2}). Show that there is a smooth vector field on S^{2} which vanishes at exactly one point.
Hint: Try using stereographic projection and consider one of the coordinate vector fields.
Solution. Recall that

$$
\mathbb{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}
$$

Let us denote (u, v) the stereographic coordinates relative to the projection from the north pole $N=(0,0,1)$, that is, the map

$$
\begin{aligned}
\phi: \mathbb{S}^{2} \backslash\{N\} & \rightarrow \mathbb{R}^{2} \\
(x, y, z) & \mapsto \quad(u, v)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right)
\end{aligned}
$$

(Note that we use the letters u, v to denote real numbers but also to denote the component functions ϕ^{0}, ϕ^{1} of the chart ϕ, which are functions $\mathbb{S}^{2} \rightarrow \mathbb{R}$.)

Similarly, denote (\bar{u}, \bar{v}) the stereographic coordinates relative to the projection from the south pole $S=(0,0,-1)$, which is the map

$$
\begin{aligned}
\psi: \mathbb{S}^{2} \backslash\{S\} & \rightarrow \mathbb{R}^{2} \\
(x, y, z) & \mapsto(\bar{u}, \bar{v})=\left(\frac{x}{1+z}, \frac{y}{1+z}\right)
\end{aligned}
$$

The transition function $\psi \circ \phi^{-1}(u, v)$ is obtained after some computation:

$$
(\bar{u}, \bar{v})=\left(\frac{u}{u^{2}+v^{2}}, \frac{v}{3}\right)
$$

For this we use the inverse of the north stereographic projection which is

$$
x=\frac{2 u}{1+u^{2}+v^{2}} \quad y=\frac{2 v}{1+u^{2}+v^{2}} \quad z=\frac{-1+u^{2}+v^{2}}{1+u^{2}+v^{2}} .
$$

Let $X=\frac{\partial}{\partial \phi^{0}}=\frac{\partial}{\partial u}$ be the first coordinate vector field of the chart ϕ. This vector field X is a non-vanishing smooth vector field defined on $\mathbb{S}^{2} \backslash\{N\}$. (Its component functions w.r.t. ϕ are just the constant functions 1 and 0 ; therefore X is smooth.) The important step is to show that X extends to a smooth vector field defined on the whole sphere.

For this we compute the component functions w.r.t. ψ on the intersection of the two charts, i.e. on $\mathbb{S}^{2} \backslash\{N, S\}$:

$$
\begin{aligned}
X & =\frac{\partial \psi^{0}}{\partial \phi^{0}} \frac{\partial}{\partial \psi^{1}}+\frac{\partial \psi^{1}}{\partial \phi^{0}} \frac{\partial}{\partial \psi^{1}} \\
& =\frac{\partial \bar{u}}{\partial u} \frac{\partial}{\partial \bar{u}}+\frac{\partial \bar{v}}{\partial u} \frac{\partial}{\partial \bar{v}} \\
& =\frac{v^{2}-u^{2}}{\left(u^{2}+v^{2}\right)^{2}} \frac{\partial}{\partial \bar{u}}+\frac{-2 u v}{\left(u^{2}+v^{2}\right)^{2}} \frac{\partial}{\partial \bar{v}} \\
& =\left(\bar{v}^{2}-\bar{u}^{2}\right) \frac{\partial}{\partial \bar{u}}-2 \overline{u \bar{v}} \frac{\partial}{\partial \bar{v}}
\end{aligned}
$$

From this we see that X can be extended to a smooth vector field X on the whole sphere by setting its value on the north pole to zero., i.e.

$$
\left.X\right|_{p}= \begin{cases}\left.\frac{\partial}{\partial u}\right|_{p} & \text { if } p \in \mathbb{S}^{2} \backslash\{N\} \\ 0 & \text { if } p=N .\end{cases}
$$

