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Exercise 7.1 (Trivial vector bundles). .

(a) (=) Show that a vector bundle is trivial if and only if it has a global frame.

Solution. Let E be a trivial vector bundle with projection = : £ — M. By
definition, there exists an isomorphism of smooth vector bundles ¢ : F —
M x R¥, where M x RF is the trivial bundle. For the latter we can construct
smooth sections o : M — M x R¥ by setting o/(p) := (p,e;), fori =1,... k,
where (e1,...,e;) is the standard basis of R¥. Then o/ = (d],...,0}) is a
global frame for M x R¥. Let’s define o; : M — E : p — ¢~ (o’(p)). These
are smooth sections because ¢ is an isomorphism of smooth vector bundles.
Moreover, for any p € M, we know ¢|g, : E, = {p} x R* is a bijective linear
map, hence we can conclude that {o;(p)}; forms a basis for E, as {o}(p)};
forms a basis for {p} x R¥. Thus ¢ = (071, ...,0}) is a global frame for (E, 7).

(<) Conversely, suppose we have a global frame o = (01,...,0%) for a
smooth vector bundle (E,x) where 7 : E — M. We know that Vp € M, the
vectors o;(p) form a basis of E,. We define a map ¥ : M xR¥ — E: (p,v) —
X = Zle vio;(p). Note that 7' = 7o W where 7/ : M x R¥ — M : (p,v) — p
is the standard projection.

We claim that ¥ is a vector bundle isomorphism.

Note that for each point p € M, the function ¥, : RF — E, sends v —
>, 0i(p) is a linear isomorphism because the vectors o;(p) form a basis of
T,M. Therefore ¥ is bijective. The inverse map ¥™1 restricts to a linear
isomorphism W L. E, — R*. Thus it suffices to prove that both ¥ and U1
are smooth to conclude that ¥ is an isomorphism of vector bundles.

In fact, since as we said ¥ is bijective, it suffices to prove that V¥ is a local
diffeo (this will imply that it is open, hence a homeo, and clearly a homeo +
local diffeo is a diffeo).

Thus to finish we will prove the following:

Claim: For any local trivialization ¢ : 71U — U x R¥ (where U C M is
an open set), the restricted bijection

Dy = O|pypr : U X RF = 771U

is a diffeo.
Proof of claim: Since ¢ is a diffeo, it suffices to show that the composite map
$oUy : U xRF - U x R¥ is a diffeo. This map ¢ o ¥; sends

(p,v) ¢(Z vioi(p)) = (p, Z v'5i(p)),

where o; = m o poo; : U — R¥, where in turn 71 : U x RF — R¥ : (2,0) — v
is the projection. This expression shows that ¢ o &y is smooth and that its
differential is

D,.(¢ 0 @y )(a,b) = (a, Z b'G; + D,a;(b).

- . . (id 0
This linear transformation is represented by a matrix (1 ZPU A ) where A,
P

is a matrix whose columns are the vectors &;(p). This matrix is invertible,
hence the bijection ¢ o @y is a local diffeo, hence it is a diffeo. O

(b) Show that the vector bundle TS! is trivial.
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Solution. Since S! is diffeomorphic to T, it suffices to show that the tangent
bundle of the n-torus T" is trivial.

We denote « : R” — T" the quotient map, since the letter 7 is now used
for the projection 7 : TT™ — T™.

Recall that there is an inverse atlas of T™ consisting of the parametrizations
¢ = Kl : U—UC T™, where UCR"is any open set where k is injective
and U = /{(ﬁ ).

FEach such parametrization ¢ of T" induces a parametrization ® : UxR" —

71U of TT" that sends (z,v) — (¢7(z), >_; v* ﬁ p). Note here that ¢!
is a chart of T”. The parametrizations ® of this kind form an atlas of TT",
which defines the smooth structure on TT".

We define a frame of TT" consisting of n vector fields E' defined as follows.

For each parametrization ¢ : U — U as above, we let
E'(p) = ®(¢ '(p),e;) forallpeU.

This formula defines E?|¢;. Let us check that E’ is well defined (i.e. that the
formula agrees on an intersection U NV of images of two parametrizations
¢ : U — U, ¢ : V — V. For this, recall that the transition map ! o ¢
between the parametrizations ¢, 1 of T™ is locally a translation. Therefore
the transition map between the parametrizations ®, ¥ of TT" is

vlo CI)(QZ,U) = (1/}71 ° ¢($), D(b(:p) (1/}71 © QZ))(U)) = (1#71 © QZ)(SU)?U)

since the differential of a translation is the identity map. Equivalently, we
have ®(z,v) = ¥(y,v) if ¢(z) = ¥ (y). In particular, for a point x € U NV,
putting z = ¢~ !(p) and y = ¥ ~(p), we have

(¢ (p).ei) = (z,y) = U(y,e) = ¥ (W' (p), &),

as needed to show that E; is well defined.

The vector fields E? are clearly smooth because they are smooth on each
open set U as above, since the maps ® and ¢! are smooth. The vector fields
E' are also linearly independent at each point p = ¢(z) € T", since the vectors
e; are linearly independent. Therefore the vectors FE; constitute a frame of
TTT", defined globally (i.e. on the whole torus T™). We conclude that that
the tangent bundle TT" is trivial.

O

Exercise 7.2 (Properties of smooth vector fields). Let M be a smooth manifold and
let X : M — TM be a vector field. Show that the following are equivalent:

(a) X is a smooth vector field.

(b) The component functions of X are smooth with respect to all charts of one
particular smooth atlas of M.

(c¢) For any smooth function f : U — R on an open set U C M, the function
Xf:U — R defined by X f(p) := X,(f) is smooth.

Solution. Let (M, A) be a smooth manifold and X a vector field. Recall that we say
that X is a smooth vector field if the component functions of X are smooth for any

chart (U, ¢) € A. The component functions w.r.t (U, ¢) were defined as the functions
X%: U — R such that

; 0
XPZZX(P)@p7 pel.

(a) = (b) is clear.
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(b) = (a) Let A" C A and suppose the component functions are smooth wrt all
(U,p) € A'. Let (V,9) € A. We write

_ P

where X’ are the component functions of X wrt (V,4). To show that the X' are
smooth on V it suffices to show that they are smooth in a neighborhood of every
point of V. So let p € V, let (U,¢) € A’ be a chart containing p and let X be the
component functions of X wrt (U, ¢). Then from the change of coordinates formula
it follows that (Exercise 3.iii from last week)

X =% ((;;

J

, peV
p

w") Xi(q), qeUNV
q

and we conclude that X? is smooth on U N Vii=1,...,n.

(¢) = (a) Let (U,p) € A. Applying X to one of the components of ¢ yields
X¢' = X' which is smooth by hypothesis, i.e. the component functions of X wrt
(U, ¢) are smooth.

(a) = (c) Conversely, suppose X is a smooth vector field, let f € C*(U) for an
open set U C M. To check that X f is smooth, it suffices to check that it is smooth
in a neighborhood of every point of U. Given p € U, let (W, ¢) be a smooth chart
containing p and satisfying W C U. Then on W we can write

Xflg) =) X'(q) 8?01-
7 q

f

Then X f is smooth on W since the component function of X are smooth by hypothesis
9 f= of O‘P__l)

Ot g ox?

qgew). O

is smooth as a function of

and f is smooth (so in particular

Exercise 7.3 (Vector field on S?). Show that there is a smooth vector field on S?
which vanishes at exactly one point.

Hint: Try using stereographic projection and consider one of the coordinate vector fields.

Solution. Recall that
$?={(w,y.2) eR* 2’ +y* + 27 =1}

Let us denote (u,v) the stereographic coordinates relative to the projection from the
north pole N = (0,0, 1), that is, the map

¢:S*\{N} — R?
(z,y,2) (u,v)=< SR )

1—2"1—2

(Note that we use the letters u,v to denote real numbers but also to denote the
component functions ¢*, ¢! of the chart ¢, which are functions S? — R.)

Similarly, denote (@, v) the stereographic coordinates relative to the projection from
the south pole S = (0,0, —1), which is the map
x Y
1+2" 142

PSP\ {S} — R?
The transition function ¢ o ¢~!(u,v) is obtained after some computation:

(@) u v

u,v) =

’ u? + 02" u? 40?2
3

(z,9,2) = (@,0)
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For this we use the inverse of the north stereographic projection which is

2u 2v —1 +u? + 02
rT = —— = 1= ——————"",
14 u2 402 Y 14+ w2402 14 u2 + 02
Let X = 8%0 = % be the first coordinate vector field of the chart ¢. This vector

field X is a non-vanishing smooth vector field defined on S? \ {N}. (Its component
functions w.r.t. ¢ are just the constant functions 1 and 0; therefore X is smooth.)
The important step is to show that X extends to a smooth vector field defined on
the whole sphere.

For this we compute the component functions w.r.t. 1 on the intersection of the
two charts, i.e. on §?\ {N, S}:

ol 9 ol o

X =500 901 T 960 aul

_dmw o 9v 9

“ouou  oudw

B vE—u? 9 —2uv 0

T ou (Bt 02 o
L0 o

:(@2—u)?—2m—,
u

From this we see that X can be extended to a smooth vector field X on the whole
sphere by setting its value on the north pole to zero., i.e.

0 ; 2
X, = 8u‘p ifpe S\ {N}
0  ifp=N.



