## Introduction to Differentiable Manifolds <br> EPFL - Fall 2021 <br> M. Cossarini, B. Santos Correia <br> Exercise Series 9 - Covector fields, or 1-forms

Exercise 9.1. Show that a covector field $\xi$ on a smooth manifold $M$ is smooth if and only if for any smooth vector field $X$ on $M$ the function $\langle\sigma, X\rangle: M \rightarrow \mathbb{R}$ defined by $\langle\sigma, X\rangle(p)=\sigma_{p}\left(X_{p}\right)$ is smooth.

Exercise 9.2 (Properties of the differential). Let $f, g \in C^{\infty}(M, \mathbb{R})$.
(a) Prove the formulas: $\mathrm{d}(a f+b g)=a \mathrm{~d} f+b \mathrm{~d} g$ (where $a, b$ are constants), $\mathrm{d}(f g)=f \mathrm{~d} g+g \mathrm{~d} f, \mathrm{~d}\left(\frac{f}{g}\right)=\frac{g \mathrm{~d} f-f \mathrm{~d} g}{g^{2}}$ (on the set where $g \neq 0$ )
(b) If $h: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function then $\mathrm{d}(h \circ f)=\left(h^{\prime} \circ f\right) \mathrm{d} f$.
(c) If $\mathrm{d} f \equiv 0$, then $f$ is constant on each connected component of $M$.

Exercise 9.3 (Closed and exact 1-forms). Let $M$ be a smooth manifold, $\xi \in \Omega^{1}(M)$.
(a) Show that for every $p \in M$ there exists $f \in C^{\infty}(M)$ such that $\left.\omega\right|_{p}=\left.\mathrm{d} f\right|_{p}$. Note that this is only an equality of the covectors at one single point $p$.
(b) Write $\xi=\sum_{i} \xi_{i} \mathrm{~d} \phi^{i}$ in some chart $(U, \phi)$. Show that if $\xi$ is exact, then

$$
\begin{equation*}
\frac{\partial}{\partial \phi^{j}} \xi_{i}=\frac{\partial}{\partial \phi^{i}} \xi_{j} \quad \text { on } U . \tag{1}
\end{equation*}
$$

(c) Use the preceding fact to write down a 1 -form which is not exact.

Remark: A 1-form that satisfies (??) for all charts $(U, \phi)$ is called closed. We have just proved that closedness is a necessary condition for exactness. However, it is not always sufficient. The topology of $M$ comes into play: e.g. on a convex subset of $\mathbb{R}^{n}$ any closed 1-form is exact. But on the punctured plane $\mathbb{R}^{2} \backslash\{0\}$ we can construct a closed 1-form that is not exact.

Exercise 9.4 (A closed 1-form that is not exact). Let $M=\mathbb{R}^{2} \backslash\{0\}$. Let $\omega \in \Omega^{1}(M)$ be given by

$$
\omega=\frac{x \mathrm{~d} y-y \mathrm{~d} x}{x^{2}+y^{2}} .
$$

Compute the integral of $\omega$ along the curve

$$
\gamma:[0,2 \pi] \rightarrow M: t \mapsto(\cos t, \sin t) .
$$

Conclude that $\omega$ is not exact.
Exercise 9.5. Let $(x, y)$ be the standard coordinates on $\mathbb{R}^{2}$ and let $(r, \varphi)$ be the polar coordinates.
(a) Express $\mathrm{d} x$ and $\mathrm{d} y$ in terms of $\mathrm{d} r$ and $\mathrm{d} \varphi$ (wherever the latter are defined).
(b) Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}, G(x, y)=x^{2}+y^{2}$. Let $t$ be the standard coordinate on $\mathbb{R}$. Compute $G^{*}(\mathrm{~d} t)$.

Exercise 9.6 (Line integrals). .
(a) Let $M$ be a smooth manifold, $\gamma: I=[a, b] \rightarrow M$ a smooth curve and let $\xi \in$ $\Omega^{1}(M)$. Denote by $t$ the standard coordinate on $\mathbb{R}$. Show that $\int_{\gamma} \xi=\int_{I} \gamma^{*} \xi$.
(b) (Change of variables for 1 -forms) Show that if $\sigma: I \rightarrow J$ is a positive (i.e. order preserving) diffeo between two intervals $I=[a, b], J=[c, d]$, then $\int_{I} \sigma^{*} \theta=\int_{J} \theta$ for any 1-form $\theta \in \Omega^{1}(J)$.
Hint: Compute the derivatives of the functions $F(s)=\int_{a}^{s} \sigma^{*} \theta$ and $G(t)=\int_{c}^{t} \theta$. What happens if $\sigma$ is a negative (i.e. order reversing) diffeo ?
(c) (Reparametrization invariance of curve integrals) If two $\mathcal{C}^{1}$ curves $\gamma: J \rightarrow M$, $\beta: I \rightarrow M$ are equivalent as oriented curves, in the sense that $\beta$ is a positive reparametrization of $\gamma$ (i.e. $\beta=\gamma \circ \sigma$, where $\sigma: I \rightarrow J$ is a positive diffeo), then $\int_{\gamma} \xi=\int_{\beta} \xi$ for any 1-form $\xi \in \Omega^{1}(M)$. Prove this using the definition via pullback.

