Introduction to Differentiable Manifolds		
EPFL - Fall 2021	M. Cossarini, B. Santos Correia	
Exercise Series $\mathbf{1 0}$ - Tensors	$\mathbf{2 0 2 1 - 1 1 - \mathbf { 3 0 }}$	

Exercise 10.1. On the plane \mathbb{R}^{2} with the standard coordinates (x, y) consider the 1 -form $\theta=x \mathrm{~d} y$. Compute the integral of θ along each side of the square $[1,2] \times[3,4]$, with each of the two orientations.
Exercise 10.2. Let $\mathcal{B}=\left(E_{i}\right)_{i}$ and $\widetilde{\mathcal{B}}=\left(\widetilde{E}_{j}\right)_{j}$ be two bases of a vector space $V \simeq \mathbb{R}^{n}$, and let $\mathcal{B}^{*}=\left(\varepsilon^{i}\right)_{i}$ and $\widetilde{\mathcal{B}}^{*}=\left(\widetilde{\varepsilon}^{j}\right)_{j}$ be the respective dual bases. Note that a tensor $T \in \operatorname{Ten}^{k} V$ can be written as

$$
T=\sum_{i_{0}, \ldots, i_{k-1}} T_{i_{0}, \ldots, i_{k-1}} \varepsilon^{i_{0}} \otimes \varepsilon^{i_{k-1}} \quad \text { or as } \quad T=\sum_{j_{0}, \ldots, j_{k-1}} \widetilde{T}_{j_{0}, \ldots, j_{k-1}} \widetilde{\varepsilon}^{j_{0}} \otimes \widetilde{\varepsilon}^{j_{k-1}}
$$

Find the transformation law that expresses the coefficients $\widetilde{T}_{j_{0}, \ldots, j_{k-1}}$ in terms of the coefficients $T_{i_{0}, \ldots, i_{k-1}}$.

Exercise 10.3 (Alternating covariant tensors). Let V be a finite-dimensional real vector space.
(a) Let $T \in \operatorname{Ten}^{k} V$. Suppose that with respect to some basis ε^{i} of V^{*}

$$
T=\sum_{1 \leq i_{1}, \ldots, i_{k}<n} T_{i_{1} \cdots i_{k}} \varepsilon^{i_{1}} \otimes \cdots \otimes \varepsilon^{i_{k}}
$$

Show that T is alternating iff for all $\sigma \in S_{k}: T_{i_{\sigma(1)} \cdots i_{\sigma(k)}}=\operatorname{sgn}(\sigma) T_{i_{1} \cdots i_{k}}$.
(b) Show that for any covectors $\omega^{1}, \ldots, \omega^{k} \in V^{*}$ and vectors $X_{1}, \ldots, X_{k} \in V$ we have

$$
\omega^{1} \wedge \cdots \wedge \omega^{k}\left(X_{1}, \ldots, X_{k}\right)=\operatorname{det}\left(\omega^{i}\left(X_{j}\right)\right)
$$

Exercise 10.4 (Some practice with the wedge product). Let V be a finite-dimensional vector space over \mathbb{R}.
(i) Show that the covectors $\omega^{1}, \ldots, \omega^{k} \in V^{*}$ are linearly dependent if and only if $\omega^{1} \wedge \cdots \wedge \omega^{k}=0$
(ii) Let $\left\{\omega^{1}, \ldots, \omega^{k}\right\}$ and $\left\{\eta^{1}, \ldots, \eta^{k}\right\}$ both be sets of k independent covectors. Show that they span the same subspace if and only if

$$
\omega^{1} \wedge \cdots \wedge \omega^{k}=c \eta^{1} \wedge \cdots \wedge \eta^{k}
$$

for some nonzero real number c.
(iii) On the space $V=\mathbb{R}^{2 n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$, let $\left(\alpha^{0}, \ldots, \alpha^{n-1}, \beta^{0}, \ldots, \beta^{n-1}\right)$ be the dual of the standard base. Consider the alternating 2-tensor

$$
\omega=\sum_{i} \alpha^{i} \wedge \beta^{i} \in \operatorname{Alt}^{2} V
$$

Compute the $2 n$-tensor

$$
\frac{1}{n!} \underbrace{\omega \wedge \cdots \wedge \omega}_{n \text { factors }} .
$$

