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A quantum game... the Mermin-Peres magic square

Magic squares are abundant in mathematics and usually involve constraints satisfied by all
the columns and rows in a grid of numbers. Sometimes, designing them can become arduous,
if not impossible.

Consider the following example. Suppose we want to construct a 3 × 3 magic square with
numbers in S = {−1, 1} such that their product 1 for each row, and −1 for each column.

Question 1: Let

M =

 1 1 1
−1 1 −1
1 −1 −1

 (1)

Does M satisfy the above constraints on rows and columns? Show that in fact no 3×3 magic
square exists with the above constraints. Hint: consider Li =

∏
j Mi,j and Cj =

∏
iMi,j.

Compute
∏

i Li and
∏

j Cj. What do you conclude?

Despite this issue, Alice and Bob are being challenged by Eve with the magic square game.
The setting of the game is the following:

1. At first, Alice and Bob can discuss together as long as they want and plan a strategy.

2. Then they are isolated in two separate rooms with no communication channel.

3. Eve draws a random number i ∈ {1, 2, 3} uniformly and sends it only to Alice. Alice
has to fill row i with three numbers ai1, ai2, ai3 which multiply to 1, and secretly send
the numbers to Eve. Bob does not have access to this information.

4. Eve draws a random number j ∈ {1, 2, 3} uniformly and sends it only to Bob. He then
has fill column j with three numbers b1j, b2j, b3j which multiply to −1, and secretly
send the three numbers to Eve. Alice does not have this information.

5. Row i and column j intersect at the ”matrix-element” ij. Eve declares that Alice
and Bob win the game if aij = bij, in other words if the choices of Alice and Bob are
compatible. Otherwise Eve declares that they loose the game.

Question 2: Explain why it is not possible for Alice and Bob to design a strategy that always
wins the game. Design a simple strategy such that Alice and Bob win the game with maximal
probability (no formal proof asked).

Fortunately, Alice and Bob know we don’t live in a classical world. Indeed they took quan-
tum science classes in university and they are even able to build simple quantum devices!
Therefore, before being isolated they prepare a quantum strategy (this strategy satisfies the
no-communication requirement after they are separated).
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Alice and Bob prepare 2 maximally entangled qubits (EPR or Bell pairs) in the state:

|ψ⟩AB =
1√
2
|B00⟩A,B ⊗ 1√

2
|B00⟩A,B (2)

=
1√
2

(
|00⟩A1,B1

+ |11⟩A1,B1

)
⊗ 1√

2

(
|00⟩A2,B2

+ |11⟩A2,B2

)
(3)

Note that they prepare a big enough reservoir of such states so they can play many rounds
of the game (but to fix ideas we think of one round in our discussion).

Therefore they share four qubits in total. When they are separated, Alice brings qubits A1

and A2 in her room, while Bob gets B1 and B2. Before going further into the game, they also
agreed on a mysterious set of 9 observables and fill the magic square with these observables:

Q =

 σx ⊗ σx σx ⊗ I I⊗ σx
σy ⊗ σy −σx ⊗ σz −σz ⊗ σx
σz ⊗ σz I⊗ σz σz ⊗ I

 (4)

To proceed further it is useful to keep in mind the following aspects of the measurement
postulate:

1. an observable is a measurable quantity described an hermitian matrix;

2. the measurement apparatus projects the state (or wave function) on one of the eigen-
basis vectors |v⟩;

3. the value of the observable is given by the eigenvalue associated with the eigenvector;

4. simultaneous measurements of many observables are only possible for commuting ob-
servables since they must have a common eigenbasis.

5. the Born rule states that P(|Ψ⟩ → |v⟩) = |⟨v|Ψ⟩|2. If an eigenvalue is degenerate the
probability of measuring this eigenvalue is the sum of these probabilities over corre-
sponding eigenvectors.

A remark that you might find useful later on is that when eigenvalues are degenerate the
corresponding eigenvectors and therefore eigenbasis are not unique.

Question 3: Check for instance the observable Q1,2 = σx ⊗ I. What are the possible eigen-
values of this observable? Give two sets of possible eigen-basis vectors.

The quantum strategy of Alice and Bob is the following. First they prepare and
share the state |Ψ⟩AB. After being given a row i, Alice makes the measurement
described by the observables Qi,1, Qi,2, Qi,3, stores the results in ai1, ai2, ai3, and
sends these three numbers to Eve. Bob proceeds similarly, he stores the results
of a simultaneous measurement of the observables Q1,j, Q2,j, Q3,j in b1j, b2j, b3j, and

2



Quantum Game Mini-Project December 1, 2021

sends the three numbers to Eve. It turns out this is always a winning strategy.
We guide you through the theory and then you will implement the game on the
IBM Q NISQ devices!

Question 4: Check the following properties of the quantum magic square Q:

1. Check that observables in rows and columns commute. Therefore simultaneous mea-
surements (by Alice) in a given row and simultaneous measurements (by Bob) in a given
column are allowed.

2. Check also that if observables do not belong to the same row or column they do not nec-
essarily commute. Note that the strategy of Alice and Bob does not require simultaneous
such measurements!

3. Calculate the products
∏

j Qi,j for each j, and the products
∏

iQi,j for each i. What do
you observe? Compare with the classical magic square where we used only numbers in
S = {−1,+1}.

In order to better understand the previous observations, remember that if two operators
commute, then they can be diagonalized in a common basis. For instance, in the basis
BA
1 = {|++⟩ , |+−⟩ , |−+⟩ , |−−⟩}, the operators Q1,1 = σx ⊗ σx, Q1,2 = σx ⊗ I, Q1,3 = I⊗ σx

can be diagonalized as they can be written:

Q1,1 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 Q1,2 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 Q1,3 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 (5)

Question 5: For each 4 possible outcomes in BA
1 for Alice when she gets row i = 1, specify

what result is stored in [ai1, ai2, ai3], and check that the product equals 1.

Question 6: Now let’s see what happens on Bob’s side when he gets column j = 2. Find the
common basis BB

2 for the operators Q1,2, Q2,2, Q3,2, and for each 4 possible outcomes in BB
2 ,

explain what result is stored in [b1j, b2j, b3j] and check the product b1jb2jb3j.

Question 7: Let’s keep assuming that Alice got i = 1, and Bob got j = 2. In order to win
the game they need to have measured a12 = b12. Calculate the probability P (a12 = b12) =
P (a12 = 1, b12 = 1) + P (a12 = −1, b12 = −1) using the previous input wave function |ψ⟩A,B

mentioned earlier. What do you conclude?

Experiments

Question 8: In order to test these results experimentally, you will use an IBM-Q NISQ
device and replicate the possible outcomes for the specific case i = 1 and j = 2. Design
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the appropriate quantum circuit. It ought to have the following form (note that IBM-Q only
allows you to make measurements in the computational basis {|00⟩ , |01⟩ , |10⟩ , |11⟩} so you
will have to find a way to circumvent this issue using a basis change). Your circuit ought to
have the following form:

|0⟩A1

state preparation

change of basis for Alice

|0⟩A2

|0⟩B1

change of basis for Bob

|0⟩B2

Now, run your circuit on the IBM ”simulator” machine. Write down the outputs and discuss
the results: which outcome corresponds to which results ai1, ai2, ai3 and b1j, b2j, b3j? Do Alice
and Bob respect the rules of the game? Do they win the game all the time?

Question 9: If you are satisfied with your quantum circuit, you can now run it on a real
quantum machine! (Depending on the resources availability, launch queue may take up to a
few minutes). Do you observe any difference with the results in Question 11? Why?

Question 10: Assume now that Alice is given i = 3 and Bob j = 1.

1. What is the common basis BA
3 for Alice’s observables? What is the common basis BB

1

for Bob’s observables?

2. Propose a quantum circuit as in question 8, run it on ”simulator”, and write down the
outputs with the corresponding outcomes ai1, ai2, ai3 and b1j, b2j, b3j. Run the circuit on
a real quantum machine.

Question 11: Assume now that Alice is given i = 2 and Bob j = 3.

1. What is the common basis BA
2 for Alice’s observables? What is the common basis BB

3

for Bob’s observables?

2. Propose a quantum circuit as in question 8, run it on ”simulator”, and write down the
outputs with the corresponding outcomes ai1, ai2, ai3 and b1j, b2j, b3j. Run the circuit on
a real quantum machine.

Bonus Question. Write a Qiskit code that deals with all possible rows and columns given
to Alice and Bob (there are thus 9 possible circuits). The input should be the row i and the
column j. The output should be a histogram with the answers of Alice and Bob. Run it on
the simulator and then on a real quantum machine.
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