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Astrophysics III: Stellar and galactic dynamics
Solutions

Problem 1:

The Jeans equations are obtained from the Boltzmann equations, by computing
moments of various orders.
A- Direct integration on velocities (moment of order 0)
B- Integration on the velocities after multiplying by one component of the velocity
(moment of order 1)
Here are a few properties to keep in mind :

1) f → 0 when |vi| → ∞ 2) m
∫
f d3v = ρ 3) m

∫
vi f d

3v = ρvi

4)
∫
vi vjf d

3v = ρvivj 5) vi vj + σij
2 = vivj

where we set m = 1.

A - moment 0:

∂ν

∂t
+
∑
i

∂

∂xi
(νvi) = 0

in vectorial notation:
∂ν

∂t
+∇ · (ν v) = 0

In spherical coordinates, the divergence of a vector reads :

∇ · F =
1

r2
∂

∂r
(r2Fr) +

1

r sin θ

∂

∂θ
(sin θ Fθ) +

1

r sin θ

∂Fφ
∂φ

consequently, the equation becomes :

∂ν

∂t
+

∂

∂r
(νvr) +

2

r
νvr +

1

r

∂

∂θ
(νvθ) +

cot θ

r
νvθ +

1

r sin θ

∂

∂φ
(νvφ) = 0

The systems with a spherical symmetry have negligible meridional motions, hence
vθ = 0. Furthermore, a possible rotation of the system is done at an azimuthal symme-
try, i.e. ∂vφ/∂φ = 0. (In short, there can be no angular dependencies in a spherically
symmetric system, hence ∂/∂θ = 0, ∂/∂φ = 0)

Thus, we get for the moment 0

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρvr) =

∂ρ

∂t
+

∂

∂r
(ρvr) +

2

r
ρvr = 0
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B - First moment In vectorial notation

∂v

∂t
+ (v · ∇)v = −∇Φ− 1

ρ
∇ · (ρσ2)

Transformation to spherical coordinates is risky (because of the divergence of ten-
sor), so it is better to start directly from the collisionless Boltzmann equation expressed
in spherical coordinates.

∂f

∂t
+ vr

∂f

∂r
+
vθ
r

∂f

∂θ
+

vφ
r sin θ

∂f

∂φ
+

(
v2θ + v2φ

r
− ∂Φ

∂r

)
∂f

∂vr

+
1

r

(
v2φ cot θ − vrvθ

) ∂f

∂vθ
− 1

r
[vφ (vr + vθ cot θ)]

∂f

∂vφ
= 0

We compute the radial Jeans equation by multiplying the collisionless Boltzmann
equation by vr and integrating on velocities∫

v2r
∂f

∂r
d3v =

∂

∂r

∫
f v2r d

3v =
∂

∂r

(
ρ v2r

)
∫
vr vθ
r

∂f

∂θ
d3v =

1

r

∂

∂θ

∫
f vr vθ d

3v =
1

r

∂

∂θ
(ρ vrvθ) = 0∫

vr vφ
r sin θ

∂f

∂φ
d3v =

1

r sin θ

∂

∂φ

∫
f vr vφ d

3v =
1

r sin θ

∂

∂φ
(ρ vrvφ) = 0

where the null values in the last two equations comes from the assumption of spher-
ical symmetry,

∫
vr v

2
θ

r

∂f

∂vr
d3v =

1

r

∫
dvφ

∫
v2θ dvθ

∫
vr
∂f

∂vr
dvr = −1

r

∫
f v2θ d

3v = −ρv
2
θ

r

where the integral on vr was integrated by parts, and similarly,

∫
vr v

2
φ

r

∂f

∂vr
d3v =

1

r

∫
dvθ

∫
v2φ dvφ

∫
vr
∂f

∂vr
dvr = −1

r

∫
f v2φ d

3v = −ρ
v2φ
r

∫
∂Φ

∂r
vr
∂f

∂vr
d3v =

∂Φ

∂r

∫
dvφ

∫
dvθ

∫
vr
∂f

∂vr
dvr = −∂Φ

∂r

∫
f d3v = −ρ ∂Φ

∂r

still with the same integration by parts,∫
vrv

2
φ

cot θ

r

∂f

∂vθ
d3v =

cot θ

r

∫
vr dvr

∫
v2φ dvφ

∫
∂f

∂vθ
dvθ = 0
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after integration by parts of the integral on vθ,

∫
v2rvθ
r

∂f

∂vθ
d3v =

1

r

∫
v2r dvr

∫
dvφ

∫
vθ
∂f

∂vθ
dvθ = −1

r

∫
f v2r d

3v = −ρv
2
r

r

and similarly,

∫
v2rvφ
r

∂f

∂vφ
d3v =

1

r

∫
v2r dvr

∫
dvθ

∫
vφ
∂f

∂vφ
dvφ = −1

r

∫
f v2r d

3v = −ρv
2
r

r

and finally,

∫
vrvθvφ cot θ

r

∂f

∂vφ
d3v =

cot θ

r

∫
vrdvr

∫
vθ dvθ

∫
vφ
∂f

∂vφ
dvφ

= −cot θ

r

∫
vrvθfd

3v = −ρvrvθ cot θ

r

where we have again performed an integration by parts for the integral on vφ. Since
we’re in a spherically symmetric case, we may choose any fixed θ, and we choose θ such
that cot θ = 0.
Putting everything together finally results in the general Jeans equation for spherical
symmetry:

∂ (ρvr)

∂t
+
∂
(
ρv2r

)
∂r

+
ρ

r

[
2 v2r −

(
v2θ + v2φ

)]
= −ρ ∂Φ

∂r

One can introduce the velocity dispersion : v2i = σ2
i + vi

2

Isotropic systems: vφ = vθ = vr
For a stationary system with isotropic velocities, the Jeans equation reduces to :

d (ρσ2
r)

dr
= −ρ dΦ

dr

The potential Φ in the Jeans equation is always the gravitational potential representing
the total mass of the system. ρ may be a mass density, a number density or even a
luminosity density.

Problem 2:

Plummer:

ρ =
3M

4π a3

[
1 +

(r
a

)2]−5/2

Φ = − GM√
r2 + a2

dΦ

dr
= GMr(r2 + a2)−3/2
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Introducing these expressions into the last equation of Problem 2, we get

d (ρσ2
r)

dr
= − 3M

4π a3

[
1 +

(r
a

)2]−5/2

·GMr
(
r2 + a2

)−3/2

= −3GM2a2

4π

r

(a2 + r2)5/2 (a2 + r2)3/2
= −3GM2a2

4π

r

(a2 + r2)4

By integration, taking into account that ρσ2
r must tend to zero when M tends to zero,

one obtains

ρσ2
r =

GM2a2

8π (r2 + a2)3

Finally,

σ2
r =

GM

6
√
r2 + a2

Problem 3:

density = (3.*M/(4.*pi*rc**3))*(1+(r/rc)**2)**(-5./2.)
sigma = sqrt( 1./(8*pi*density) * M**2 * rc**2 /( r**2 + rc**2 )**3 )
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