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Solutions Series 8 - Vector fields and flows 2021-12-11

Exercise 8.1. Compute the flows of the following vector fields.
2 « ” _ .0 o)
(a) On the plane R, the “angular” vector field X = x5 —yg7.

rcos(t — t0)> with

Solution. The integral curves are of the form ~(t) = <rsin(t o)
—to

to € R and r > 0. We can rewrite them as

(1) (r cos(t) cos(tg) + rsin(t) sin(t0)>

rsin(t) cos(tp) — r cos(t) sin(tg)
cost —sint rcos(ty)

sint  cost —rsin(tp)

cost —sint o

sint cost i)

_ .= (®o\ _ [cost —sint) [xg
where (z9,%0) = 7(0). Thus the flow is &% <y0> = (Sint cost ) <y0>,

defined for all points (zg,yo) € R? and all t € R. O
(b) A constant vector field X on the torus T".

Solution. Note first that we have an identification T, T" = R" for all points
[p] = m(p) € T", where p € R™ and 7 : R™ — T" is the quotient map. This
identification is the linear transformation T, which is an isomorphism from
TpR" = R" to T, T". This identification Ty : R" — T,T™ is independent
of which preimage we choose for [p], since if p’ is another preimage and 7 is
the translation of R™ that maps p — p/, then m(x) = 7 o 7, and therefore

Tpymr = Tymo Typr = Tymw

since T),7 = idRn.
Thus we can talk about a constant vector field X on T". This means that

Xp =a forallpeR"

for some fixed a € R™.

Let X = 7*X be the vector field on R" given by the similar formula )?p =a
for all p € R™. Note that X is m-related to X, where m : R® — T" is the
quotient map. Therefore 7 o v is an integral curve of X if v is an integral
curve of X.

For any point p € R™, the maximal integral curve of X starting at the point
pis %?7,,(75) = p + at. Therefore the curve

Vx,p) (1) =7y () = [p + ta]

is an integral curve of X. It has initial condition vx ,;;(0) = [p] and it is
maximal because it is defined for all ¢.

Therefore the flow of X is ®% [p] = [p + ta], which is defined for all points
[p] € T" and all ¢ € R. O

Exercise 8.2. Let X be a C* tangent vector field on a manifold M, with & > 1.

(a) For a point p € M and numbers s,t € R, show that the equation CIDS?H) (p) =

DL (P% (p)) holds if the right-hand side is defined.

Solution. Since we are only considering one vector field X, we may omit the

subindex X and thus write ® := ®x, I, := Ix, and v, := yx -
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The right-hand side is defined if and only if s € I, (so that ¢ := ®*(p) is
defined) and ¢ € I, (so that ®'(q) = &% (P*(p)) is defined). We assume this
is the case.

The function 7 + 7, (7+5), defined for 7 € I, —s, is the curve 7,, because it
is a maximal integral curve of X that visits at time 7 = 0 the point v,(s) = ¢.
In particular I; = I, —s. Thus since t € I, it follows that ¢t +s € I,,, and that

01(@*(p)) = () = 74(t) = p(t + 5) = ().
O

We say that X is complete if its flow ®x is defined over M x R. Show that
a compactly supported vector field is complete. In particular, on a compact
manifold, every vector field is complete.

Solution. We will first show that the flow ®x is defined on a set M x (—¢,¢)
for some £ > 0. Once this is established, we see that ®% (p) is defined for any
(p,t) € M x R by decomposing t = >, t; with |t;| < ¢ and applying the last
formula ®% (p) = (@Y ... (p)). This shows that X is complete.

Suppose X vanishes outside a compact set K C M. The domain of the flow
®x is a set Dom(®x) C M x R that contains the set K x {Or}. In addition,
Dom(®x) is open (this is part of the theorem of differentiability of the flow
®x). Since K is compact, by the tube lemma the open set Dom(®x) also
contains a “tube neighborhood” K X (—¢,¢) of the set K x {Or}, for some
number € > 0. But the domain Dom(®x) also contains the set (M \ K) x R,
because for points p € M \ K, since the vector field X vanishes at p, the
maximal solution is the constant curve yx ,(t) = p, which is defined for all
t € R. This shows that ®x is defined on M x (—¢,¢), and therefore ¢y is
complete, as explained above. O

If X is complete, show that the map ®% is a diffeomorphism M — M.

Solution. ® is a diffeomorphism with inverse <I>;(t since @ o <I>;(t =Pt =
@Y = idy; and similarly @' o &4 = idy;. O

Exercise 8.3. If X is a complete C* vector field with (k > 1) and h € C*1(M,R).

(a)

(b)

=0 ot

Show that the function X (k) : M — R that sends p — X,(h) is C*.

Solution. Take a chart (U, ) and write X|g = >, X* ?01-. Then X|,(h) =
>, Xt p%\ph. Thus to see that the function X (h) is C¥, it suffices to check
that the functions X* and (gl-h are C*. And indeed: the fact that X is C*
means that the functions X? are C*, and the fact that h is C*+1 implies that

its first-order derivatives 59 (Z,. are CF. O

Show that X (h) = £|,_, hs, where hy := (®%)*(h) = ho @Y.
Also show that X (hy) = (®%)*(X(h)).

Solution. Writing ® := ®x, we have

0 0

h ((I)t(p)) = T@O(p)h (675

‘ﬁt(p)> = Tph(Xp) = Xp(h)-

t=0 t=0

Exercise 8.4. Let f : M — N be a smooth map. A vector field X € X(M) is
f-related to a vector field Y € X(N) if T, f(X)) = Yy(,) for all p € M.

(a)

X is f-related to Y if and only if Xj,(h o f) = Yy, (h) for all functions
h € C*°(N,R) and all points p € M.
2



Introduction to Differentiable Manifolds Solutions Series 8

(b)

X is f-related to Y at p <= Yy

Solution. By definition of T,f we have (T,f(Xp))(h) = Xp(h o f) for all
functions h € C*°(M). Thus

p = Tpf(Xp)

<:>Yfp(h) (T f(Xp))(h) VheC™(N)
<~ Yf(p)(h)—Xp(h f) VhECOO(N)

U

If X is f-related to Y and + is an integral curve of X, show that f o~ is an
integral curve of Y.

Solution. We just need to verify that

(fon)'(®) = Ty f (V' (1) = Tain S (X)) = Yiae) = Yrert)
for all ¢ in the domain of ~. g

If f is a local diffeo, for every vector field Y € X(INV) there exists a unique
X € X(M) that is f-related to Y. We denote f*Y := X.

Thus if f is a diffeo, f-relatedness is a bijection from X(M) to X(V). In this
case, if X is f-related to Y, we write X = f*Y and Y = f,. X

Solution. Assume f : M — N is a local diffeo. Thus for every point p € M,
the linear transformation T, f : M — N is invertible.

Let Y € X(N). A vector field X on M is f-related to Y iff for each
point p € M we have T),f(X|,) =Y}, or, equivalently, X|, = (Tpf)*l(Yf(p)).
Thus there is a unique vector field that is f-related to Y, and it is the function

o (Tpf) " (V). O
If f is a closed embedding, show that every vector field X € X(M) is f-related
to some vector field Y € X(N).
Hint: Construct Y locally, then use partitions of unity.
What happens if f is just an immersion? In this case, find and prove a local
version of the fact.

Solution. The local version is the following.

Lemma. Let f : M — N be a smooth immersion, and let X € X(M). Then
for each point pg € M there exist open neighborhoods U C M and V C N of
po and f(po) resp., and a vector field Y € X(V') such that X |y is f-related to
Y.

Proof. By the constant rank theorem, there exist charts ¢ : U — U and
PV - V of M and N centered at po and f(pp) such that the local expression
f: o foe ! of fis given by f(a?o,...,xm_l) = (2%,...,2m 1 0,...,0).
Moreover, we can assume that V = U x W for some open set 1% C R®™™ that
contains the origin.

Note that each coordinate vector field zi € .’{(U ) of the chart ¢ is f-

€ X(V) of the chart

related to the corresponding coordinate vector field

a’wl
3 0 _ 0
. That is, for each p € U we have T),f <8W p) = 9|
Let m : V — U be the projection map (20, ... 2™ Y s (29, .., an ),

and let p= ¢ lomot: U — W. Note that p is a retraction of f|Y;.

Let X' be the components of X w.r.t. the chart ¢. Thus X[y = > o<, Xia%i
We construct a vector field Y € X(V') whose components w.r.t. the chart 1
are

vi_ {Xiop if i < n,
0 ifi>n.

for each point g € V.

Thus Y|, = Zogz’<n Xl(p(Q)) aii .
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In particular, at a point ¢ = f(p) we have p(q) = p, therefore

vig= 3 xi(p) 2
)

)
0<i<n 81,[1
p

q

= Y X) T,f ( =

0<i<n

Q

= Tpf Z X'(p) = Tpf(Xp).

0<i<n

=)

(pl

This shows that Y is f|;-related to X. O

Now we can prove the global version.

Let f: M — N be a closed embedding, and let X € X(M). We shall
construct a vector field Y € X(N) such that X is f-related to Y.

The closed set f(M) can be covered by open sets (Vj)r>1 where there is a
vector field Y, € X(Vj) that is f-related to X.

We also define the open set V, = N\ f(M) and we put any vector field Y}
on Vp, for example Yy = 0. Note that X is f-related to Yy trivially. The open
sets (V)k>0 form an open cover of N. Let (nx)r>0 be a partition of unity
subordinate to this cover, and consider the vector field Y = )", niY;, € X(IV).
We claim that X is f-related to Y. Indeed, for each point p € M we have

Yf(p) = an(f(p)) Yk’f(p) = Zﬁk(f(P)) Tpf(Xlp) = Tpf(X]p)
k k

because >, nx(f(p)) = 1. O
(e) A vector field X € X(M) is tangent to a smooth embedded submanifold

S C M if X, € T,S for all points p € S. If this happens and in addition S is

closed, show that every integral curve of X that visits .S is contained in S.

Solution. Let ¢ : S — M be the inclusion map, and let Y = X|g € X(95).
Note that Y is (-related to X.

Let v : I — M be an integral curve of X that visits S. The set I’ =
7 1(8) = {t € I : y(t) € S} is nonempty and closed (because S is closed).
We want to prove that I’ = I, and for this it suffices to show that I’ is open.
Let ty € I'. This means that vy(t9p) € S. Let 8 : J — S be an integral
curve of Y that coincides with ~ at the instant ¢y, where J C R is an open
interval containing ¢g. Since Y is ¢ related to X, the curve 1o g is an integral
curve of X that coincides with «y at tg, thus it coincides with v in the interval
I" = InJ, which is a neighborhood of #y. This implies that v(t) € S for all
t € I". Therefore I"” C I', which proves that I’ is open, as intended. O

Exercise 8.5. If X is a smooth vector field on a manifold M and p € M is a point
where X, # 0, then there exists a chart (U, ¢) of M defined at p such X |y = 8%0. Hint:
It is easier to construct the inverse 1) = ¢~ *. Use a function of the form o (z) = @’;”(0 (f(z!, ...,z YY),

where f: U — M is a suitable function defined on an open set U C R" ™!,

Solution. Let (V,n) be a chart centered at p, i.e. such that n(p) = 0. Denote X* the
components of X with respect to the chart n. Since X|, # 0, we may assume w.l.o.g

that X© #£ 0 at p, which means that the vectors X|p, 8%1 JREREE %’p are linearly
independent.
Consider the map ¢ : R*"™! — R™ : (2!,... 2" 1) — (0,2',...,2"!), and let

W =.1"1(n(V)), so that we can define the map f =n"tor: W — V.
Define the map (20, 21, ... 2" 1) = CIW)”(O (f(x',...,2"1)) at all points where the

right hand side is defined. The domain of v is an open set which includes the slice
4
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{O0r} x W. The partial derivative of 1) with respect to 2 is w = X. Its
other partial derivatives at the point z = 0 are
oz, ... a1 of(zt, ..., a" 1) 0
ox’ —o ox’ o OM »
for i # 0. Since the vectors X, 8%1 e, % are linearly independent, we

conclude that Tyt is an isomorphism. Thus there is a neighborhood Z of 0 in R™
such that the map 9|z : Z — (Z) C M is a diffeomorphism. Hence |z is a local
parametrization of M. O



