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Exercise 8.1. Compute the flows of the following vector fields.

(a) On the plane R2, the “angular” vector field X = x ∂
∂y − y

∂
∂x .

Solution. The integral curves are of the form γ(t) =

(
r cos(t− t0)

r sin(t− t0)

)
, with

t0 ∈ R and r ≥ 0. We can rewrite them as

γ(t) =

(
r cos(t) cos(t0) + r sin(t) sin(t0)

r sin(t) cos(t0)− r cos(t) sin(t0)

)
=

(
cos t − sin t

sin t cos t

)(
r cos(t0)

−r sin(t0)

)
=

(
cos t − sin t

sin t cos t

)(
x0

y0

)

where (x0, y0) = γ(0). Thus the flow is Φt
X

(
x0

y0

)
=

(
cos t − sin t

sin t cos t

)(
x0

y0

)
,

defined for all points (x0, y0) ∈ R2 and all t ∈ R. �

(b) A constant vector field X on the torus Tn.

Solution. Note first that we have an identification T[p]Tn ≡ Rn for all points

[p] = π(p) ∈ Tn, where p ∈ Rn and π : Rn → Tn is the quotient map. This

identification is the linear transformation Tpπ, which is an isomorphism from

TpRn ≡ Rn to T[p]Tn. This identification Tpπ : Rn → TpTn is independent

of which preimage we choose for [p], since if p′ is another preimage and τ is

the translation of Rn that maps p 7→ p′, then π(x) = π ◦ τ , and therefore

Tpπ = Tp′π ◦ Tpτ ≡ Tp′π

since Tpτ ≡ idRn .

Thus we can talk about a constant vector field X on Tn. This means that

X[p] = a for all p ∈ Rn

for some fixed a ∈ Rn.

Let X̂ = π∗X be the vector field on Rn given by the similar formula X̂p = a

for all p ∈ Rn. Note that X̂ is π-related to X, where π : Rn → Tn is the

quotient map. Therefore π ◦ γ is an integral curve of X if γ is an integral

curve of X̂.

For any point p ∈ Rn, the maximal integral curve of X̂ starting at the point

p is γ
X̂,p

(t) = p+ at. Therefore the curve

γX,[p](t) := π(γ
X̂,p

(t)) = [p+ ta]

is an integral curve of X. It has initial condition γX,[p](0) = [p] and it is

maximal because it is defined for all t.

Therefore the flow of X is Φt
X [p] = [p+ ta], which is defined for all points

[p] ∈ Tn and all t ∈ R. �

Exercise 8.2. Let X be a Ck tangent vector field on a manifold M , with k ≥ 1.

(a) For a point p ∈M and numbers s, t ∈ R, show that the equation Φ
(s+t)
X (p) =

Φt
X(Φs

X(p)) holds if the right-hand side is defined.

Solution. Since we are only considering one vector field X, we may omit the

subindex X and thus write Φ := ΦX , Ip := IX,p and γp := γX,p.
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The right-hand side is defined if and only if s ∈ Ip (so that q := Φs(p) is

defined) and t ∈ Iq (so that Φt(q) = Φt
X(Φs(p)) is defined). We assume this

is the case.

The function τ 7→ γp(τ+s), defined for τ ∈ Ip−s, is the curve γq, because it

is a maximal integral curve of X that visits at time τ = 0 the point γp(s) = q.

In particular Iq = Ip−s. Thus since t ∈ Iq, it follows that t+s ∈ Ip, and that

Φt(Φs(p)) = Φt(q) = γq(t) = γp(t+ s) = Φt+s(p).

�

(b) We say that X is complete if its flow ΦX is defined over M ×R. Show that

a compactly supported vector field is complete. In particular, on a compact

manifold, every vector field is complete.

Solution. We will first show that the flow ΦX is defined on a set M × (−ε, ε)
for some ε > 0. Once this is established, we see that Φt

X(p) is defined for any

(p, t) ∈ M × R by decomposing t =
∑

i ti with |ti| < ε and applying the last

formula Φt
X(p) = Φt0

X(Φt1
X . . . (p)). This shows that X is complete.

Suppose X vanishes outside a compact set K ⊆M . The domain of the flow

ΦX is a set Dom(ΦX) ⊆M ×R that contains the set K × {0R}. In addition,

Dom(ΦX) is open (this is part of the theorem of differentiability of the flow

ΦX). Since K is compact, by the tube lemma the open set Dom(ΦX) also

contains a “tube neighborhood” K × (−ε, ε) of the set K × {0R}, for some

number ε > 0. But the domain Dom(ΦX) also contains the set (M \K)×R,

because for points p ∈ M \ K, since the vector field X vanishes at p, the

maximal solution is the constant curve γX,p(t) = p, which is defined for all

t ∈ R. This shows that ΦX is defined on M × (−ε, ε), and therefore ΦX is

complete, as explained above. �

(c) If X is complete, show that the map Φt
X is a diffeomorphism M →M .

Solution. Φt
X is a diffeomorphism with inverse Φ−tX since Φt

X ◦ Φ−tX = Φt−t =

Φ0 = idM and similarly Φ−tX ◦ Φt
X = idM . �

Exercise 8.3. If X is a complete Ck vector field with (k ≥ 1) and h ∈ Ck+1(M,R).

(a) Show that the function X(h) : M → R that sends p 7→ Xp(h) is Ck.

Solution. Take a chart (U,ϕ) and write X|U =
∑

iX
i ∂
∂ϕi . Then X|p(h) =∑

iX
i|p ∂

∂ϕi |ph. Thus to see that the function X(h) is Ck, it suffices to check

that the functions Xi and ∂
∂ϕih are Ck. And indeed: the fact that X is Ck

means that the functions Xi are Ck, and the fact that h is Ck+1 implies that

its first-order derivatives ∂h
∂ϕi are Ck. �

(b) Show that X(h) = ∂
∂t

∣∣
t=0

ht, where ht := (Φt
X)∗(h) = h ◦ Φt

X .

Also show that X(ht) = (Φt
X)∗(X(h)).

Solution. Writing Φ := ΦX , we have

∂

∂t

∣∣∣∣
t=0

ht(p) =
∂

∂t

∣∣∣∣
t=0

h
(
Φt(p)

)
= TΦ0(p)h

(
∂

∂t

∣∣∣∣
t=0

Φt(p)

)
= Tph(Xp) = Xp(h).

�

Exercise 8.4. Let f : M → N be a smooth map. A vector field X ∈ X(M) is

f -related to a vector field Y ∈ X(N) if Tpf(Xp) = Yf(p) for all p ∈M .

(a) X is f -related to Y if and only if Xp(h ◦ f) = Yf(p)(h) for all functions

h ∈ C∞(N,R) and all points p ∈M .
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Solution. By definition of Tpf we have ( Tpf(Xp))(h) = Xp(h ◦ f) for all

functions h ∈ C∞(M). Thus

X is f -related to Y at p ⇐⇒ Yf(p) = Tpf(Xp)

⇐⇒ Yf(p)(h) = ( Tpf(Xp))(h) ∀h ∈ C∞(N)

⇐⇒ Yf(p)(h) = Xp(h ◦ f) ∀h ∈ C∞(N)

�

(b) If X is f -related to Y and γ is an integral curve of X, show that f ◦ γ is an

integral curve of Y .

Solution. We just need to verify that

(f ◦ γ)′(t) = Tγ(t)f(γ′(t)) = Tγ(t)f(Xγ(t)) = Yf(γ(t)) = Yf◦γ(t)

for all t in the domain of γ. �

(c) If f is a local diffeo, for every vector field Y ∈ X(N) there exists a unique

X ∈ X(M) that is f -related to Y . We denote f∗Y := X.

Thus if f is a diffeo, f -relatedness is a bijection from X(M) to X(N). In this

case, if X is f -related to Y , we write X = f∗Y and Y = f∗X.

Solution. Assume f : M → N is a local diffeo. Thus for every point p ∈ M ,

the linear transformation Tpf : M → N is invertible.

Let Y ∈ X(N). A vector field X on M is f -related to Y iff for each

point p ∈M we have Tpf(X|p) = Yp, or, equivalently, X|p = ( Tpf)−1(Yf(p)).

Thus there is a unique vector field that is f -related to Y , and it is the function

p 7→ ( Tpf)−1(Yf(p)). �

(d) If f is a closed embedding, show that every vector field X ∈ X(M) is f -related

to some vector field Y ∈ X(N).

Hint: Construct Y locally, then use partitions of unity.

What happens if f is just an immersion? In this case, find and prove a local

version of the fact.

Solution. The local version is the following.

Lemma. Let f : M → N be a smooth immersion, and let X ∈ X(M). Then

for each point p0 ∈M there exist open neighborhoods U ⊆M and V ⊆ N of

p0 and f(p0) resp., and a vector field Y ∈ X(V ) such that X|U is f -related to

Y .

Proof. By the constant rank theorem, there exist charts ϕ : U → Ũ and

ψ : V → Ṽ of M and N centered at p0 and f(p0) such that the local expression

f̃ = ψ ◦ f ◦ ϕ−1 of f is given by f̃(x0, . . . , xm−1) = (x0, . . . , xm−1, 0, . . . , 0).

Moreover, we can assume that Ṽ = Ũ×W̃ for some open set W̃ ⊆ Rn−m that

contains the origin.

Note that each coordinate vector field ∂
∂ϕi ∈ X(U) of the chart ϕ is f -

related to the corresponding coordinate vector field ∂
∂ψi ∈ X(V ) of the chart

ψ. That is, for each p ∈ U we have Tpf

(
∂
∂ϕi

∣∣∣
p

)
= ∂

∂ψi

∣∣∣
f(p)

.

Let π : Ṽ → Ũ be the projection map (x0, . . . , xm−1) 7→ (x0, . . . , xn−1),

and let ρ = ϕ−1 ◦ π ◦ ψ : U →W . Note that ρ is a retraction of f |VU .

LetXi be the components ofX w.r.t. the chart ϕ. ThusX|U =
∑

0≤i<nX
i ∂
∂ϕi

We construct a vector field Y ∈ X(V ) whose components w.r.t. the chart ψ

are

Y i =

{
Xi ◦ ρ if i < n,

0 if i ≥ n.

Thus Y |q =
∑

0≤i<nX
i(ρ(q)) ∂

∂ψi

∣∣∣
q

for each point q ∈ V .
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In particular, at a point q = f(p) we have ρ(q) = p, therefore

Y |q =
∑

0≤i<n
Xi(p)

∂

∂ψi

∣∣∣∣
q

=
∑

0≤i<n
Xi(p) Tpf

(
∂

∂ϕi

∣∣∣∣
p

)

= Tpf

 ∑
0≤i<n

Xi(p)
∂

∂ϕi

∣∣∣∣
p

 = Tpf(Xp).

This shows that Y is f |VU -related to X. �

Now we can prove the global version.

Let f : M → N be a closed embedding, and let X ∈ X(M). We shall

construct a vector field Y ∈ X(N) such that X is f -related to Y .

The closed set f(M) can be covered by open sets (Vk)k≥1 where there is a

vector field Yk ∈ X(Vk) that is f -related to X.

We also define the open set V0 = N \ f(M) and we put any vector field Y0

on V0, for example Y0 ≡ 0. Note that X is f -related to Y0 trivially. The open

sets (Vk)k≥0 form an open cover of N . Let (ηk)k≥0 be a partition of unity

subordinate to this cover, and consider the vector field Y =
∑

k ηkYk ∈ X(N).

We claim that X is f -related to Y . Indeed, for each point p ∈M we have

Yf(p) =
∑
k

ηk(f(p))Yk|f(p) =
∑
k

ηk(f(p)) Tpf(X|p) = Tpf(X|p)

because
∑

k ηk(f(p)) = 1. �

(e) A vector field X ∈ X(M) is tangent to a smooth embedded submanifold

S ⊆M if Xp ∈ TpS for all points p ∈ S. If this happens and in addition S is

closed, show that every integral curve of X that visits S is contained in S.

Solution. Let ι : S → M be the inclusion map, and let Y = X|S ∈ X(S).

Note that Y is ι-related to X.

Let γ : I → M be an integral curve of X that visits S. The set I ′ =

γ−1(S) = {t ∈ I : γ(t) ∈ S} is nonempty and closed (because S is closed).

We want to prove that I ′ = I, and for this it suffices to show that I ′ is open.

Let t0 ∈ I ′. This means that γ(t0) ∈ S. Let β : J → S be an integral

curve of Y that coincides with γ at the instant t0, where J ⊆ R is an open

interval containing t0. Since Y is ι related to X, the curve ι ◦ β is an integral

curve of X that coincides with γ at t0, thus it coincides with γ in the interval

I ′′ = I ∩ J , which is a neighborhood of t0. This implies that γ(t) ∈ S for all

t ∈ I ′′. Therefore I ′′ ⊆ I ′, which proves that I ′ is open, as intended. �

Exercise 8.5. If X is a smooth vector field on a manifold M and p ∈ M is a point

whereXp 6= 0, then there exists a chart (U, φ) ofM defined at p suchX|U = ∂
∂φ0

. Hint:

It is easier to construct the inverse ψ = φ−1. Use a function of the form ψ(x) = Φx0

X (f(x1, . . . , xn−1)),

where f : U →M is a suitable function defined on an open set U ⊆ Rn−1.

Solution. Let (V, η) be a chart centered at p, i.e. such that η(p) = 0. Denote Xi the

components of X with respect to the chart η. Since X|p 6= 0, we may assume w.l.o.g

that X0 6= 0 at p, which means that the vectors X|p, ∂
∂η1

∣∣∣
p
, . . . , ∂

∂ηn−1

∣∣∣
p

are linearly

independent.

Consider the map ι : Rn−1 → Rn : (x1, . . . , xn−1) 7→ (0, x1, . . . , xn−1), and let

W = ι−1(η(V )), so that we can define the map f = η−1 ◦ ι : W → V .

Define the map ψ(x0, x1, . . . , xn−1) = Φx0

X (f(x1, . . . , xn−1)) at all points where the

right hand side is defined. The domain of ψ is an open set which includes the slice
4
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{0R} ×W . The partial derivative of ψ with respect to x0 is ∂ψ(x0,...,xn−1)
∂x0

= X. Its

other partial derivatives at the point x = 0 are

∂ψ(x0, . . . , xn−1)

∂xi

∣∣∣∣
x=0

=
∂f(x1, . . . , xn−1)

∂xi

∣∣∣∣
x=0

=
∂

∂ηi

∣∣∣∣
p

for i 6= 0. Since the vectors Xp,
∂
∂η1

∣∣∣
p
, . . . , ∂

∂ηn−1

∣∣∣
p

are linearly independent, we

conclude that T0ψ is an isomorphism. Thus there is a neighborhood Z of 0 in Rn
such that the map ψ|Z : Z → ψ(Z) ⊆ M is a diffeomorphism. Hence ψ|Z is a local

parametrization of M . �
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