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Exercise 9.1. Show that a covector field ξ on a smooth manifold M is smooth if and

only if for any smooth vector field X on M the function 〈ξ,X〉 : M → R defined by

〈ξ,X〉(p) = ξp(Xp) is smooth.

Solution. Suppose ξ is a smooth covector field and X is a smooth vector field. Let

us show that 〈ξ,X〉 is a smooth function. Take any chart (U,ϕ) of M . Then we

can write ξ|U =
∑

i ξi dϕi, and X =
∑

j X
j ∂
∂ϕj , where ξi, X

j : U → R are smooth

functions. Then the function

〈ξ,X〉 =
∑
i

ξiX
i

is a smooth function on U since the product and sum of smooth functions is smooth.

Viceversa, now suppose ξ is a covector field such that 〈ξ,X〉 is a smooth function

for every smooth vector field X on M . Using bump functions we can show that

this is also true for a vector field X defined on an open set U ⊆ M : the function

〈ξ|U , X〉 : U → R is smooth in this case as well.

Proof. To see that 〈ξ|U , X〉 is smooth at a point p ∈ U , we summon a bump function

η supported on U that is ≡ 1 in an open neighborhood W of p. Then we define a

smooth vector field Y ∈ XM by setting Y |U ≡ ηX and Y |M\supp η ≡ 0. This field

Y coincides with X on W , therefore the function 〈ξ,X〉 coincides with the smooth

function 〈ξ, Y 〉 on W . This proves that 〈ξ,X〉 is smooth at the point p. �

Let (U,ϕ) a smooth chart of M . The component functions of ξ with respect to ϕ,

are the functions ξi : U → R such that

ξ|U =
∑
i

ξi dϕi.

This functions can be computed by the formula ξi = 〈ξ, ∂
∂ϕi 〉, thus they are are

smooth. This shows that ξ is smooth on U . The same reasoning shows that ξ is

smooth everywhere. �

Exercise 9.2 (Properties of the differential). Let f, g ∈ C∞(M,R).

(a) Prove the formulas: d(af + bg) = a df + bdg (where a, b are constants),

d(fg) = f dg + g df , d
(
f
g

)
= g df−f dg

g2
(on the set where g 6= 0)

Solution. Here we use the fundamental properties of tangent vectors, namely

the linearity and the Leibniz rule. For every vector field X ∈ TM we have

d(af + bg)(X) = X(a f + b g) = aX(f) + bX(g) = a df(X) + b dg(X)

and

d(fg)(X) = X(fg) = f X(g) + g X(f) = f dg(X) + g df(X)

Recall that if h : M → R is constant then X(h) = 0 for every vector field

X ∈ TM , therefore

0 = X(g/g) = g X(1/g) +
1

g
X(g)

which lead us to X(1/g) = −X(g)/g2. Hence we obtain

d(f/g)(X) = X(f/g) = f X(1/g) +
1

g
X(f) =

g X(f)− f X(g)

g2
=
g df − f dg

g2
(X)

�
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(b) If h : R→ R is a smooth function then d(h ◦ f) = (h′ ◦ f) df.

Solution. This is a consequence of the chain rule. Given p ∈ M , let (U, xi)

a smooth chart centered at p. Then let us write the local representation for

d(h ◦ f):

d(h ◦ f)|p =
∑
i

∂(h ◦ f)

∂xi

∣∣∣∣
p

dxi|p

The standard chain rule says that ∂(h◦f)
∂xi

∣∣∣
p

= h′(f(p)) ∂f
∂xi

∣∣∣
p
, hence

d(h ◦ f)p = h′(f(p))
∑
i

∂f

∂xi

∣∣∣∣
p

dxi|p = h′(f(p)) df |p.

�

(c) If df ≡ 0, then f is constant on each connected component of M .

Solution. Let p ∈M . Take a chart (U, φ) defined at p whose domain U ⊆M
is connected, and let f̃ = f ◦φ−1 ∈ C∞(Ũ) be the local expression of f . Then

we have

df |p =
∑
i

∂f

∂φi

∣∣∣∣
p

dφi|p =
∑
i

∂if̃(φ(p)) dφi|p for all points p ∈ U .

Thus if df ≡ 0, then all the partial derivatives of the function f̃ : Ũ → R
vanish on Ũ . Since Ũ is connected, we see by elementary calculus that f̃ is

constant on Ũ , therefore f is constant on U . This proves that if df ≡ 0,

then f is locally constant on M . Therefore f is constant on each connected

component of M . �

Exercise 9.3 (Closed and exact 1-forms). Let M be a smooth manifold, ω ∈ Ω1(M).

(a) Show that for every p ∈M there exists f ∈ C∞(M) such that ω|p = df |p.
Note that this is only an equality of the covectors at one single point p.

Solution. Fix p ∈ M , and let (U, φ) be a local chart. Writing ω and df in

coordinates yields

ω|p =
∑
i

ai dφi|p, and df |p =
∑
i

∂f

∂φi

∣∣∣∣
p

dφi|p

for some real numbers ai. Then define a smooth function g =
∑

i aiφ
i. Clearly

∂g
∂φi

∣∣∣
p

= ai and so dg|p = ωp. To obtain a function defined on the whole

manifold M , we use a bump function η ∈ C∞(M) that is 1 in a neighborhood

of p and has support in U . Then the function f : M → R defined as g · η
on U and 0 outside supp η is smooth and satisfies df |p = dg|p = ω|p since

differentials act locally. �

(b) Write ξ =
∑

i ξi dφi in some chart (U, φ). Show that if ξ is exact, then

∂

∂φj
ξi =

∂

∂φi
ξj on U. (1)

Solution. Suppose ξ is exact, i.e., ξ = df for some smooth function f : M →
R. The local expression f̃ = f ◦φ−1 is a smooth function on Ũ = φ(U) ⊆ Rn.

Thus by Schwarz’s theorem on the symmetry of second derivatives we have

∂2f̃

∂xi∂xj
=

∂2f̃

∂xj∂xi
on Ũ

for all indices i, j. We thus obtain the following identity for f :

∂

∂φi
∂

∂φj
f =

∂

∂φj
∂

∂φi
f on U.
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Now, the components of ξ w.r.t. the chart φ are ξi = ξ( ∂
∂φi

) = df( ∂
∂φi

) = ∂
∂φi

f .

Thus the identity that we proved is the same as (1). �

(c) Use the preceding fact to write down a 1-form which is not exact.

Solution. A simple example is to define the following 1-form on R2:

ω = y dx− x dy

where (x, y) are the standard coordinates. Then the component functions are

ω0 = y, ω1 = −x

and so
∂ω0

∂y
= 1 6= −1 =

∂ω1

∂x
.

�

Remark: A 1-form that satisfies (1) for all charts (U, φ) is called closed. We have just proved that

closedness is a necessary condition for exactness. However, it is not always sufficient. The topology

of M comes into play: e.g. on a convex subset of Rn any closed 1-form is exact. But on the punctured

plane R2 \ {0} we can construct a closed 1-form that is not exact.

Exercise 9.4 (A closed 1-form that is not exact). Let M = R2\{0}. Let ω ∈ Ω1(M)

be given by

ω =
x dy − y dx

x2 + y2
.

Compute the integral of ω along the curve

γ : [0, 2π]→M : t 7→ (cos t, sin t).

Conclude that ω is not exact.

Solution. Recall that the line integral of ω along the curve gamma is defined as∫
γ
ω =

∫ 2π

0
ωγ(t)(γ

′(t)) dt

Since ωγ(t)(γ
′(t)) = cos2 t+ sin2 t = 1 then

∫
γ ω = 2π. The fundamental theorem for

line integrals implies that the integral of an exact 1-form over a closed curve is zero,

hence ω is not an exact 1-form.

Remark: Notice that the 1-form ω is closed since

∂

∂y

(
−y

x2 + y2

)
= − x2 − y2

(x2 + y2)2
=

∂

∂x

(
x

x2 + y2

)
�

Exercise 9.5. Let (x, y) be the standard coordinates on R2 and let (r, ϕ) be the

polar coordinates.

(a) Express dx and dy in terms of dr and dϕ (wherever the latter are defined).

Solution. Let (x, y) = (r cosφ, r sinφ) be the standard polar coordinate trans-

formation. We have dx = d(r cosφ) = cosφ dr − r sinφ dφ and dy =

d(r sinφ) = sinφ dr + r cosφ dφ. �

(b) Let G : R2 → R, G(x, y) = x2 + y2. Let t be the standard coordinate on R.

Compute G∗(dt).

Solution. G∗(dt) = dG = 2x dx+ 2y dy �

Exercise 9.6 (Line integrals). .

(a) Let M be a smooth manifold, γ : I = [a, b]→M a smooth curve and let ξ ∈
Ω1(M). Denote by t the standard coordinate on R. Show that

∫
γ ξ =

∫
I γ
∗ξ.

3



Introduction to Differentiable Manifolds Solutions Series 9

Solution. We have that γ∗θ is a one-form on [a, b] and since Ω1(R) has the

global frame dt there exists f ∈ C∞([a, b]) such that γ∗θ = f dt. In fact, the

function f is given by

f(t) = γ∗θ(
∂

∂t
) = θ|γ(t)(γ′(t)).

Hence ∫
γ
θ =

∫ b

a
θγ(t)(γ

′(t)) dt =

∫ b

a
f(t) dt

�

(b) (Change of variables for 1-forms) Show that if σ : I → J is a positive (i.e.

order preserving) diffeo between two intervals I = [a, b], J = [c, d], then∫
I σ
∗θ =

∫
J θ for any 1-form θ ∈ Ω1(J).

Hint: Compute the derivatives of the functions F (s) =
∫ s

a
σ∗θ and G(t) =

∫ t

c
θ.

What happens if σ is a negative (i.e. order reversing) diffeo ?

Solution. We write θ = g dy, σ∗θ = f dx. We can compute f in terms of g as

follows:

f(s) = σ∗θ

(
∂

∂s

)
= θ

(
σ∗

∂

∂s

)
= θ

(
σ′(s) · ∂

∂s

)
= σ′(s) · θ

(
∂

∂s

)
= σ′(s) · g(σ(s)).

Now we consider the functions F (s) =
∫ s
a σ
∗θ and G(t) =

∫ t
c θ. By the

fundamental theorem of integral calculus we have F ′(s) = f(s) and G′(t) =

g(t).

We claim that F (s) = G(σ(s)) for all s = [a, b]. Indeed, both functions F

and G ◦ σ have value 0 at s = a, and their derivatives coincide: (G ◦ σ)′(s) =

G′(σ(s)) · σ′(s) = f(s) = F ′(s).

We conclude that F (b) =
∫ b
a σ
∗θ equals G(σ(b)) = G(d) =

∫ d
c θ.

Now consider the case that σ : I → J is an order-reversing diffeomorphism.

To keep having σ(a) = c and σ(b) = d we write I = [a, b] and J = [d, c]. In

this case the same argument as above proves that the integral
∫
I σ
∗θ :=

∫ b
a f

is equal to the integral
∫ d
c g = −

∫ c
d g = −

∫
J θ. Therefore

∫
I σ
∗θ = −

∫
J θ. �

(c) (Reparametrization invariance of curve integrals) If two C1 curves γ : J →M ,

β : I →M are equivalent as oriented curves, in the sense that β is a positive

reparametrization of γ (i.e. β = γ ◦ σ, where σ : I → J is a positive diffeo),

then
∫
γ ξ =

∫
β ξ for any 1-form ξ ∈ Ω1(M). Prove this using the definition

via pullback.

Solution. ∫
β
ξ =

∫
I
β∗ξ =

∫
I
(γ ◦ σ)∗ξ

=

∫
I
σ∗(γ∗ξ) =

∫
J
γ∗ξ =

∫
γ
ξ

�
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