Introduction to Differentiable Manifolds	
EPFL – Fall 2021	M. Cossarini, B. Santos Correia
Solutions Series 9 - Covector fields, or	1-forms 2021–12–11

Exercise 9.1. Show that a covector field ξ on a smooth manifold M is smooth if and only if for any smooth vector field X on M the function $\langle \xi, X \rangle : M \to \mathbb{R}$ defined by $\langle \xi, X \rangle(p) = \xi_p(X_p)$ is smooth.

Solution. Suppose ξ is a smooth covector field and X is a smooth vector field. Let us show that $\langle \xi, X \rangle$ is a smooth function. Take any chart (U, φ) of M. Then we can write $\xi|_U = \sum_i \xi_i d\varphi^i$, and $X = \sum_j X^j \frac{\partial}{\partial \varphi^j}$, where $\xi_i, X^j : U \to \mathbb{R}$ are smooth functions. Then the function

$$\langle \xi, X \rangle = \sum_i \xi_i \, X^i$$

is a smooth function on U since the product and sum of smooth functions is smooth.

Viceversa, now suppose ξ is a covector field such that $\langle \xi, X \rangle$ is a smooth function for every smooth vector field X on M. Using bump functions we can show that this is also true for a vector field X defined on an open set $U \subseteq M$: the function $\langle \xi |_U, X \rangle : U \to \mathbb{R}$ is smooth in this case as well.

Proof. To see that $\langle \xi |_U, X \rangle$ is smooth at a point $p \in U$, we summon a bump function η supported on U that is $\equiv 1$ in an open neighborhood W of p. Then we define a smooth vector field $Y \in \mathfrak{X} M$ by setting $Y|_U \equiv \eta X$ and $Y|_{M \setminus \text{supp } \eta} \equiv 0$. This field Y coincides with X on W, therefore the function $\langle \xi, X \rangle$ coincides with the smooth function $\langle \xi, Y \rangle$ on W. This proves that $\langle \xi, X \rangle$ is smooth at the point p. \Box

Let (U, φ) a smooth chart of M. The component functions of ξ with respect to φ , are the functions $\xi_i : U \to \mathbb{R}$ such that

$$\xi|_U = \sum_i \xi_i \,\mathrm{d}\varphi^i.$$

This functions can be computed by the formula $\xi_i = \langle \xi, \frac{\partial}{\partial \varphi^i} \rangle$, thus they are are smooth. This shows that ξ is smooth on U. The same reasoning shows that ξ is smooth everywhere.

Exercise 9.2 (Properties of the differential). Let $f, g \in C^{\infty}(M, \mathbb{R})$.

(a) Prove the formulas: d(af + bg) = a df + b dg (where a, b are constants), d(fg) = f dg + g df, $d\left(\frac{f}{g}\right) = \frac{g df - f dg}{g^2}$ (on the set where $g \neq 0$)

Solution. Here we use the fundamental properties of tangent vectors, namely the linearity and the Leibniz rule. For every vector field $X \in TM$ we have

$$d(af + bg)(X) = X(af + bg) = aX(f) + bX(g) = a df(X) + b dg(X)$$
 and

$$d(fg)(X) = X(fg) = f X(g) + g X(f) = f dg(X) + g df(X)$$

Recall that if $h: M \to \mathbb{R}$ is constant then X(h) = 0 for every vector field $X \in TM$, therefore

$$0 = X(g/g) = g X(1/g) + \frac{1}{g}X(g)$$

which lead us to $X(1/g) = -X(g)/g^2$. Hence we obtain

$$d(f/g)(X) = X(f/g) = f X(1/g) + \frac{1}{g} X(f) = \frac{g X(f) - f X(g)}{g^2} = \frac{g df - f dg}{g^2} (X)$$

(b) If $h : \mathbb{R} \to \mathbb{R}$ is a smooth function then $d(h \circ f) = (h' \circ f) df$.

Solution. This is a consequence of the chain rule. Given $p \in M$, let (U, x^i) a smooth chart centered at p. Then let us write the local representation for $d(h \circ f)$:

$$d(h \circ f)|_p = \sum_i \left. \frac{\partial (h \circ f)}{\partial x^i} \right|_p dx^i|_p$$

The standard chain rule says that $\left.\frac{\partial(h\circ f)}{\partial x^i}\right|_p = h'(f(p)) \left.\frac{\partial f}{\partial x^i}\right|_p$, hence

$$d(h \circ f)_p = h'(f(p)) \sum_i \left. \frac{\partial f}{\partial x^i} \right|_p dx^i|_p = h'(f(p)) df|_p.$$

(c) If $df \equiv 0$, then f is constant on each connected component of M.

Solution. Let $p \in M$. Take a chart (U, ϕ) defined at p whose domain $U \subseteq M$ is connected, and let $\tilde{f} = f \circ \phi^{-1} \in \mathcal{C}^{\infty}(\tilde{U})$ be the local expression of f. Then we have

$$df|_p = \sum_i \left. \frac{\partial f}{\partial \phi^i} \right|_p d\phi^i|_p = \sum_i \partial_i \widetilde{f}(\phi(p)) d\phi^i|_p \quad \text{for all points } p \in U.$$

Thus if $df \equiv 0$, then all the partial derivatives of the function $\tilde{f}: \tilde{U} \to \mathbb{R}$ vanish on \tilde{U} . Since \tilde{U} is connected, we see by elementary calculus that \tilde{f} is constant on \tilde{U} , therefore f is constant on U. This proves that if $df \equiv 0$, then f is locally constant on M. Therefore f is constant on each connected component of M.

Exercise 9.3 (Closed and exact 1-forms). Let M be a smooth manifold, $\omega \in \Omega^1(M)$.

(a) Show that for every $p \in M$ there exists $f \in C^{\infty}(M)$ such that $\omega|_p = df|_p$. Note that this is only an equality of the covectors at one single point p.

Solution. Fix $p \in M$, and let (U, ϕ) be a local chart. Writing ω and df in coordinates yields

$$\omega|_p = \sum_i a_i \ \mathrm{d}\phi^i|_p, \qquad \text{and} \qquad \mathrm{d}f|_p = \sum_i \frac{\partial f}{\partial \phi^i}\bigg|_p \mathrm{d}\phi^i|_p$$

for some real numbers a_i . Then define a smooth function $g = \sum_i a_i \phi^i$. Clearly $\frac{\partial g}{\partial \phi^i}\Big|_p = a_i$ and so $dg|_p = \omega_p$. To obtain a function defined on the whole manifold M, we use a bump function $\eta \in C^{\infty}(M)$ that is 1 in a neighborhood of p and has support in U. Then the function $f : M \to \mathbb{R}$ defined as $g \cdot \eta$ on U and 0 outside supp η is smooth and satisfies $df|_p = dg|_p = \omega|_p$ since differentials act locally.

(b) Write $\xi = \sum_i \xi_i \, d\phi^i$ in some chart (U, ϕ) . Show that if ξ is exact, then

$$\frac{\partial}{\partial \phi^j} \xi_i = \frac{\partial}{\partial \phi^i} \xi_j \quad \text{on } U.$$
(1)

Solution. Suppose ξ is exact, i.e., $\xi = df$ for some smooth function $f : M \to \mathbb{R}$. The local expression $\tilde{f} = f \circ \phi^{-1}$ is a smooth function on $\tilde{U} = \phi(U) \subseteq \mathbb{R}^n$. Thus by Schwarz's theorem on the symmetry of second derivatives we have

$$\frac{\partial^2 \tilde{f}}{\partial x^i \partial x^j} = \frac{\partial^2 \tilde{f}}{\partial x^j \partial x^i} \quad \text{ on } \tilde{U}$$

for all indices i, j. We thus obtain the following identity for f:

$$\frac{\partial}{\partial \phi^i} \frac{\partial}{\partial \phi^j} f = \frac{\partial}{\partial \phi^j} \frac{\partial}{\partial \phi^i} f \quad \text{ on } U$$

Now, the components of ξ w.r.t. the chart ϕ are $\xi_i = \xi(\frac{\partial}{\partial \phi^i}) = df(\frac{\partial}{\partial \phi^i}) = \frac{\partial}{\partial \phi^i} f$. Thus the identity that we proved is the same as (1).

(c) Use the preceding fact to write down a 1-form which is not exact.

Solution. A simple example is to define the following 1-form on \mathbb{R}^2 :

$$\omega = y \, \mathrm{d}x - x \, \mathrm{d}y$$

where (x, y) are the standard coordinates. Then the component functions are

$$\omega_0 = y, \quad \omega_1 = -x$$

and so

$$\frac{\partial \omega_0}{\partial y} = 1 \neq -1 = \frac{\partial \omega_1}{\partial x}.$$

Remark: A 1-form that satisfies (1) for all charts (U, ϕ) is called **closed**. We have just proved that closedness is a necessary condition for exactness. However, it is not always sufficient. The topology of M comes into play: e.g. on a convex subset of \mathbb{R}^n any closed 1-form is exact. But on the punctured plane $\mathbb{R}^2 \setminus \{0\}$ we can construct a closed 1-form that is not exact.

Exercise 9.4 (A closed 1-form that is not exact). Let $M = \mathbb{R}^2 \setminus \{0\}$. Let $\omega \in \Omega^1(M)$ be given by

$$\omega = \frac{x \,\mathrm{d}y - y \,\mathrm{d}x}{x^2 + y^2}.$$

Compute the integral of ω along the curve

$$\gamma: [0, 2\pi] \to M: t \mapsto (\cos t, \sin t).$$

Conclude that ω is not exact.

Solution. Recall that the line integral of ω along the curve gamma is defined as

$$\int_{\gamma} \omega = \int_0^{2\pi} \omega_{\gamma(t)}(\gamma'(t)) \, \mathrm{d}t$$

Since $\omega_{\gamma(t)}(\gamma'(t)) = \cos^2 t + \sin^2 t = 1$ then $\int_{\gamma} \omega = 2\pi$. The fundamental theorem for line integrals implies that the integral of an exact 1-form over a closed curve is zero, hence ω is not an exact 1-form.

Remark: Notice that the 1-form ω is closed since

$$\frac{\partial}{\partial y} \left(\frac{-y}{x^2 + y^2} \right) = -\frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right)$$

Exercise 9.5. Let (x, y) be the standard coordinates on \mathbb{R}^2 and let (r, φ) be the polar coordinates.

- (a) Express dx and dy in terms of dr and d φ (wherever the latter are defined). Solution. Let $(x, y) = (r \cos \phi, r \sin \phi)$ be the standard polar coordinate transformation. We have $dx = d(r \cos \phi) = \cos \phi \, dr - r \sin \phi \, d\phi$ and $dy = d(r \sin \phi) = \sin \phi \, dr + r \cos \phi \, d\phi$.
- (b) Let $G : \mathbb{R}^2 \to \mathbb{R}$, $G(x, y) = x^2 + y^2$. Let t be the standard coordinate on \mathbb{R} . Compute $G^*(dt)$.

Solution.
$$G^*(dt) = dG = 2x dx + 2y dy$$

Exercise 9.6 (Line integrals).

(a) Let M be a smooth manifold, $\gamma : I = [a, b] \to M$ a smooth curve and let $\xi \in \Omega^1(M)$. Denote by t the standard coordinate on \mathbb{R} . Show that $\int_{\gamma} \xi = \int_I \gamma^* \xi$.

Solution. We have that $\gamma^*\theta$ is a one-form on [a, b] and since $\Omega^1(\mathbb{R})$ has the global frame dt there exists $f \in C^{\infty}([a, b])$ such that $\gamma^*\theta = f \, dt$. In fact, the function f is given by

$$f(t) = \gamma^* \theta(\frac{\partial}{\partial t}) = \theta|_{\gamma(t)}(\gamma'(t)).$$

а

Hence

$$\int_{\gamma} \theta = \int_{a}^{b} \theta_{\gamma(t)}(\gamma'(t)) \, \mathrm{d}t = \int_{a}^{b} f(t) \, \mathrm{d}t$$

(b) (Change of variables for 1-forms) Show that if $\sigma : I \to J$ is a positive (i.e. order preserving) diffeo between two intervals I = [a, b], J = [c, d], then $\int_I \sigma^* \theta = \int_J \theta$ for any 1-form $\theta \in \Omega^1(J)$.

Hint: Compute the derivatives of the functions $F(s) = \int_a^s \sigma^* \theta$ and $G(t) = \int_c^t \theta$.

What happens if σ is a negative (i.e. order reversing) diffeo ?

Solution. We write $\theta = g \, dy$, $\sigma^* \theta = f \, dx$. We can compute f in terms of g as follows:

$$f(s) = \sigma^* \theta \left(\frac{\partial}{\partial s}\right) = \theta \left(\sigma_* \frac{\partial}{\partial s}\right)$$
$$= \theta \left(\sigma'(s) \cdot \frac{\partial}{\partial s}\right) = \sigma'(s) \cdot \theta \left(\frac{\partial}{\partial s}\right) = \sigma'(s) \cdot g(\sigma(s)).$$

Now we consider the functions $F(s) = \int_a^s \sigma^* \theta$ and $G(t) = \int_c^t \theta$. By the fundamental theorem of integral calculus we have F'(s) = f(s) and G'(t) = g(t).

We claim that $F(s) = G(\sigma(s))$ for all s = [a, b]. Indeed, both functions F and $G \circ \sigma$ have value 0 at s = a, and their derivatives coincide: $(G \circ \sigma)'(s) = G'(\sigma(s)) \cdot \sigma'(s) = f(s) = F'(s)$.

We conclude that $F(b) = \int_{a}^{b} \sigma^{*}\theta$ equals $G(\sigma(b)) = G(d) = \int_{c}^{d} \theta$.

Now consider the case that $\sigma: I \to J$ is an order-reversing diffeomorphism. To keep having $\sigma(a) = c$ and $\sigma(b) = d$ we write I = [a, b] and J = [d, c]. In this case the same argument as above proves that the integral $\int_I \sigma^* \theta := \int_a^b f$ is equal to the integral $\int_c^d g = -\int_d^c g = -\int_J \theta$. Therefore $\int_I \sigma^* \theta = -\int_J \theta$. \Box (c) (Reparametrization invariance of curve integrals) If two \mathcal{C}^1 curves $\gamma: J \to M$,

 $\beta: I \to M$ are equivalent as oriented curves, in the sense that β is a positive reparametrization of γ (i.e. $\beta = \gamma \circ \sigma$, where $\sigma: I \to J$ is a positive diffeo), then $\int_{\gamma} \xi = \int_{\beta} \xi$ for any 1-form $\xi \in \Omega^1(M)$. Prove this using the definition via pullback.

Solution.

$$\int_{\beta} \xi = \int_{I} \beta^{*} \xi = \int_{I} (\gamma \circ \sigma)^{*} \xi$$
$$= \int_{I} \sigma^{*} (\gamma^{*} \xi) = \int_{J} \gamma^{*} \xi = \int_{\gamma} \xi$$