Introduction to	Differentiable Manifolds	
$\mathrm{EPFL}-\mathrm{Fall}\ 2021$	M. Cossarini, B	. Santos Correia
Exercise Series 12 - Orientation	s, manifolds w/boundary	2021 – 12 – 14

Exercise 12.1. Show that the torus \mathbb{T}^n is orientable.

Exercise 12.2. Show that a product $M_0 \times \cdots \times M_{k-1}$ of several oriented manifolds is naturally oriented.

Exercise 12.3. Let M be a differentiable *n*-manifold. Show that the sign sgn ω of a nonvanishing *n*-form on M, defined by

 $(\operatorname{sgn}\omega)|_p(X^0,\ldots,X^{n-1}) := \operatorname{sgn}(\omega|_p(X^0,\ldots,X^{n-1}))$

for $p \in M$ and $X^0, \ldots, X^{n-1} \in T_p M$, is an orientation on M, and every orientation on M is the sign of some nonvanishing *n*-form.

Exercise 12.4 (Projective plane). Show that the projective plane \mathbb{P}^2 is not orientable.

Exercise 12.5. Show that the Mobius band is not orientable.

1. Manifolds with boundary

Exercise 12.6. Let M be an n-dimensional \mathcal{C}^r manifold with boundary.

- (a) Show that Int M and ∂M are disjoint sets.
- (b) Show that ∂M , endowed with the subspace topology, can be given the structure of an n-1-dimensional \mathcal{C}^r manifold (without boundary) such that the inclusion map into M is \mathcal{C}^r .