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Astrophysics III: Stellar and galactic dynamics
Exercises

Problem 1: Derive the linearised collisionless Boltzmann equation (5.11 in Binney & Tremaine
1987) from the course:

∂f1
∂t

+ [f1, H0] + [f0,Φ1] = 0 ; ∇2Φs1 = 4πG

∫
d3v f1 (1)

Definitions and hints: The Poisson bracket is defined as

[A,B] ≡ ∂A

∂q
· ∂B
∂p
− ∂A

∂p
· ∂B
∂q

(2)

where A and B are any scalar functions of the phase-space coordinates.
We start from the collisionless Boltzmann equation and from Poisson’s equation

∂f

∂t
+ [f,H] =

∂f

∂t
+ v · ∂f

∂x
− ∂Φ

∂x
· ∂f
∂v

= 0 (3)

∇2Φs(x, t) = 4πG

∫
d3v f(x,v, t) , (4)

where Φ(x, t) is the total potential, H = 1
2v

2 + Φ(x, t) is the Hamiltonian, and Φs(x, t) is the
gravitational potential of the stellar system, which may differ from the total potential Φ(x, t)
if there is an external perturbing potential Φe(x, t). An isolated stellar system, as far as it
is in equilibrium, is described by time-independent DF f0(x,v) and potential Φ0(x) that are
solutions of 3 and 4

[f0, H0] = 0 ; ∇2Φ0 = 4πG

∫
d3v f0 with H0 =

1

2
v2 + Φ0(x) (5)

Now we assume that the equilibrium system is subjected to a weak external potential εΦe(x, t),
where |∇Φe| is of order |∇Φ0| and ε� 1. In response to this disturbance, the DF of the stellar
system and the potential arising from its stars become

f(x,v, t) = f0(x,v) + εf1(x,v, t) ; Φs(x, t) = Φ0(x) + εΦs1(x, t) (6)

and the total potential becomes

Φ(x, t) = Φ0(x, t) + εΦ1(x, t) with Φ1(x, t) = Φs1(x, t) + Φe(x, t) (7)

Problem 2: Derive equations (5.23) to (5.26) in Binney & Tremaine 1987 for linearized fluid
systems in the course:

∂ρs1
∂t

+∇ · (ρ0v1) +∇ · (ρs1v0) = 0 (8)

∂v1

∂t
+ (v0 · ∇)v1 + (v1 · ∇)v0 = −∇(h1 + Φs1 + Φe) (9)

∇2Φs1 = 4πGρs1 (10)

h1 =
p1
ρ0

=

(
dp

dρ

)
ρ0

ρs1
ρ0

= v2s
ρs1
ρ0

(11)

1



knowing that the system is characterized by a density ρs(x, t), a pressure p(x, t), a veloc-
ity v(x, t) and a potential Φ(x, t), quantities that are linked by the continuity, Euler’s and
Poisson’s equations:

∂ρs
∂t

+∇ · (ρsv) = 0 ,
∂v

∂t
+ (v · ∇)v = − 1

ρs
∇p−∇Φ , ∇2Φs = 4πGρs . (12)

One has Φ = Φs + εΦe and the equation of state is assumed barotropic: p(x, t) = p[ρs(x, t)].
Thus, introducing the specific enthalpy h, Euler’s equation becomes

∂v

∂t
+ (v · ∇)v = −∇(h+ Φ) with h(ρs) ≡

∫ ρs

0

dp(ρ)

ρ
. (13)

We further introduce the sound velocity v2s(x) ≡
[
dp(ρ)
dρ

]
ρ0(x)

. The response of the fluid to a

weak external potential εΦe(x, t) is

ρs(x, t) = ρ0(x) + ερs1(x, t) ; h(x, t) = h0(x) + εh1(x, t)

v(x, t) = v0(x) + εv1(x, t) ; Φ(x, t) = Φ0(x) + εΦ1(x, t) (14)

where Φ1 = Φs1 + Φe is the total perturbation in the potential, the sum of the external po-
tential Φe and of the Φs1 potential arising from the density perturbation ρs1.

Problem 3:

Show that the density of a gaseous sphere, which had initial density ρ0, when compressed
by a factor ε (i.e., r1 = (1 − ε)r) increases in proportion to ερ0. Similarly, show that its
pressure increases proportionally to v2sερ0, where vs is the speed of sound.

Then, using order-of-magnitude estimates, find expressions for the force changes of the
pressure and gravity introduced by the contraction, and find the instability criterion expressed
by r.
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