

Exercise 10.1. On the plane \mathbb{R}^2 with the standard coordinates (x, y) consider the 1-form $\theta = x \, dy$. Compute the integral of θ along each side of the square $[1, 2] \times [3, 4]$, with each of the two orientations. (There are 8 numbers to compute.)

Solution. The four integrals along the horizontal sides are zero because $dy \equiv 0$ on any horizontal line.

Along a vertical line given by an equation $x = c$, with $c \in \mathbb{R}$ a constant, the vector field θ coincides with the 1-form $c dy \in \Omega^1(\mathbb{R}^2)$, which is the differential of the function $h_c(x, y) = cy$. Therefore the integral of θ along a segment of such a vertical line is equal to the variation of the function h_c along this segment.

Along the segment $\{2\} \times [3, 4]$ we have $c = 2$, thus the integral of θ is 2 if we go upwards and -2 if we go downwards. Similarly, along the segment $\{1\} \times [3, 4]$ we have $c = 1$, thus the integral of θ is 1 if we go upwards and -1 if we go downwards.

Exercise 10.2. Let $\mathcal{B} = (E_i)_i$ and $\widetilde{\mathcal{B}} = (\widetilde{E}_j)_j$ be two bases of a vector space $V \simeq \mathbb{R}^n$, and let $\mathcal{B}^* = (\varepsilon^i)_i$ and $\widetilde{\mathcal{B}}^* = (\widetilde{\varepsilon}^j)_j$ be the respective dual bases. Note that a tensor $T \in \text{Ten}^k V$ can be written as

$$
T = \sum_{i_0,\dots,i_{k-1}} T_{i_0,\dots,i_{k-1}} \,\varepsilon^{i_0} \otimes \cdots \otimes \varepsilon^{i_{k-1}} \quad \text{or as} \quad T = \sum_{j_0,\dots,j_{k-1}} \widetilde{T}_{j_0,\dots,j_{k-1}} \,\widetilde{\varepsilon}^{j_0} \otimes \cdots \otimes \widetilde{\varepsilon}^{j_{k-1}}.
$$

Find the transformation law that expresses the coefficients $T_{j_0,\dots,j_{k-1}}$ in terms of the coefficients $T_{i_0,\dots,i_{k-1}}$.

Solution. There exists an invertible $n \times n$ matrix $(a_j^i)_{i,j \in \underline{n}}$ such that $\widetilde{E}_j = \sum_i a_j^i E_i$. For any k-index $J = (j_0, \ldots, j_{k-1}) \in \underline{n}^k$ we have

$$
\widetilde{T}_J = T(\widetilde{E}_J) = T(\widetilde{E}_{j_0}, \dots, \widetilde{E}_{j_{k-1}}) = T\left(\sum_{i_0 \in \underline{n}} a_{j_0}^{i_0} E_{i_0}, \dots, \sum_{i_{k-1} \in \underline{n}} a_{j_{k-1}}^{i_{k-1}} E_{i_{k-1}}\right)
$$
\n
$$
= \sum_{I \in \underline{n}^k} a_{j_0}^{i_0} \cdots a_{j_{k-1}}^{i_{k-1}} T(E_{i_0}, \dots, E_{i_{k-1}})
$$
\n
$$
= \sum_{I \in \underline{n}^k} a_{j_0}^{i_0} \cdots a_{j_{k-1}}^{i_{k-1}} T_I.
$$

Exercise 10.3 (Alternating covariant tensors). Let V be a finite-dimensional real vector space.

 \Box

(a) Let $T \in \text{Ten}^k V$. Suppose that with respect to some basis ε^i of V^*

$$
T=\sum_{1\leq i_1,\ldots,i_k
$$

Show that T is alternating iff for all $\sigma \in S_k$: $T_{i_{\sigma(1)}\cdots i_{\sigma(k)}} = \text{sgn}(\sigma) T_{i_1\cdots i_k}$. Solution. Suppose that T is alternating, then for all $\sigma \in S_n$ we have

$$
T_{i_{\sigma(1)},...,i_{\sigma(k)}} = T(E_{i_{\sigma(1)}},...,E_{i_{\sigma(k)}}) = \text{sgn}(\sigma) T(E_{i_1},...,E_{i_k}) = \text{sgn}(\sigma) T_{i_1,...,i_k}
$$

Conversely if $T_{i_{\sigma(1)},...,i_{\sigma(k)}} = \text{sgn}\,\sigma T_{i_1,...,i_k}$ for all $\sigma \in S_n$, then in particular

$$
T_{\alpha_1,...,\alpha_i,...,\alpha_j,...,\alpha_k} = -T_{\alpha_1,...,\alpha_j,...,\alpha_i,...,\alpha_k}
$$

Then for any $X_1, \ldots, X_k \in V$ the multi-linearity of T yields (we use the summation convention where repeated indices are summed over)

$$
T(X_1, \ldots, X_i, \ldots, X_j, \ldots, X_k)
$$

= $T(X_1^{\alpha_1} E_{\alpha_1}, \ldots, X_i^{\alpha_i} E_{\alpha_i}, \ldots, X_j^{\alpha_j} E_{\alpha_j}, \ldots, X_k^{\alpha_k} E_{\alpha_k})$
= $X_1^{\alpha_1} \ldots X_k^{\alpha_k} T(E_{\alpha_1}, \ldots, E_{\alpha_i}, \ldots, E_{\alpha_j}, \ldots, E_{\alpha_k})$
= $-X_1^{\alpha_1} \ldots X_k^{\alpha_k} T(E_{\alpha_1}, \ldots, E_{\alpha_j}, \ldots, E_{\alpha_i}, \ldots, E_{\alpha_k})$
= $-T(X_1, \ldots, X_j, \ldots, X_i, \ldots, X_k)$

Hence T is alternating.

 \Box

(b) Show that for any covectors $\omega^1, \ldots, \omega^k \in V^*$ and vectors $X_1, \ldots, X_k \in V$ we have

$$
\omega^1 \wedge \cdots \wedge \omega^k(X_1, \ldots, X_k) = \det(\omega^i(X_j)).
$$

Solution. Both sides are multilinear in the ω^i and so the result follows from the one for the basis covectors $\omega^i = \varepsilon^{\ell_i}$, which we have seen in the lecture.

Nevertheless, let us carry out the argument in detail. In the lecture we saw

$$
\varepsilon^{\ell_1} \wedge \cdots \wedge \varepsilon^{\ell_k}(X_1, \ldots, X_k) = \det(\varepsilon^{\ell_r}(X_j))^j_r
$$

(on the right hand side we have the determinant of a $k \times k$ matrix $(r, j =$ $1, \ldots k$; think of j as the column index and r as the row index).

Now for arbitrary covectors $\omega^r = \sum_{\ell=1}^n \omega_\ell^r \varepsilon^\ell$ we have (for the first equality we use the multilinearity of the wedge product)

$$
\omega^1 \wedge \cdots \wedge \omega^k(X_1, \ldots, X_k) = \sum_{\ell_1=1}^n \cdots \sum_{\ell_k=1}^n \omega_{\ell_1}^1 \cdots \omega_{\ell_k}^k \varepsilon^{\ell_1} \wedge \cdots \wedge \varepsilon^{\ell_k}(X_1, \ldots, X_k)
$$

\n
$$
= \sum_{\ell_1=1}^n \cdots \sum_{\ell_k=1}^n \omega_{\ell_1}^1 \cdots \omega_{\ell_k}^k \det(\varepsilon^{\ell_r}(X_j))_r^j
$$

\n
$$
= \sum_{\ell_1=1}^n \cdots \sum_{\ell_k=1}^n \omega_{\ell_1}^1 \cdots \omega_{\ell_k}^k \det \begin{pmatrix} \varepsilon^{\ell_1}(X_1) & \cdots & \varepsilon^{\ell_1}(X_k) \\ \vdots & & \vdots \\ \varepsilon^{\ell_k}(X_1) & \cdots & \varepsilon^{\ell_k}(X_k) \end{pmatrix}
$$

\n
$$
= \det(\omega^r(X_j))^i_r
$$

where in the last step we multiplied the *r*-th line by $\omega_{\ell_r}^r$ and replaced $\sum_{\ell_r=1}^n \omega_{\ell_r}^r \varepsilon^{\ell_r}$ ω^r .

Exercise 10.4 (Some practice with the wedge product). Let V be a finite-dimensional vector space over R.

(i) Show that the covectors $\omega^1, \ldots, \omega^k \in V^*$ are linearly dependent if and only if $\omega^1 \wedge \cdots \wedge \omega^k = 0.$

Solution. Let $\{\omega^1,\ldots,\omega^k\}$ be a linearly dependent set. Then, without loss of generality, we suppose

$$
\omega^1=\sum_{j=2}^k a_j\omega^j
$$

where $(a_i) \in \mathbb{R}$. Considering the wedge product, we have

$$
\omega^1 \wedge \cdots \wedge \omega^k = \left(\sum_{j=2}^k a_j \omega^j\right) \wedge \cdots \wedge \omega^k = 0
$$

where the last inequality follows from the fact that for any 1-covector α , one has $\alpha \wedge \alpha = 0$. Conversely, suppose that $\omega^1, \ldots, \omega^k$ are linearly independent

and extend it to a basis for V^* and let $\{v_1, \ldots, v_n\}$ be the dual basis for V. Then we have

$$
\omega^1 \wedge \cdots \wedge \omega^k (v_1, \ldots, v_k) = 1
$$

hence $\omega^1 \wedge \cdots \wedge \omega$ $k \neq 0.$

(ii) Let $\{\omega^1,\ldots,\omega^k\}$ and $\{\eta^1,\ldots,\eta^k\}$ both be sets of k independent covectors. Show that they span the same subspace if and only if

$$
\omega^1\wedge\cdots\wedge\omega^k=c\,\eta^1\wedge\cdots\wedge\eta^k
$$

for some nonzero real number c.

Solution. " \Leftarrow " Assume that $Span(\omega^1, \ldots, \omega^k) \neq Span(\eta^1, \ldots, \eta^k)$, so without loss of generality that $w^1 \notin \text{Span}(\eta^1, \ldots, \eta^k)$. Then the covectors $w^1, \eta^1, \ldots, \eta^k$ are linearly independent, and thus by (i) we have $w^1 \wedge \eta^1 \wedge \cdots \wedge \eta^k \neq 0$. But by assumption we know that $\omega^1 \wedge \cdots \wedge \omega^k = c \eta^1 \wedge \cdots \wedge \eta^k$ for some non-zero constant $c \in \mathbb{R}$. Hence

$$
w^1 \wedge \eta^1 \wedge \cdots \wedge \eta^k = -\frac{1}{c} w^1 \wedge \omega^1 \wedge \cdots \wedge \omega^k = 0
$$

in contradiction with the previous statement.

" \Rightarrow " If $\omega^1, \ldots, \omega^k$ and η^1, \ldots, η^k span the same subspace then the basis ω^1,\ldots,ω^k of this subspace can be obtained from η^1,\ldots,η^k by a finite sequence of basis exchange operations $\eta^i \mapsto \eta^i + \lambda \eta^j$ and $\eta^i = \lambda \eta^i$ for a non-zero constant $\lambda \in \mathbb{R}$ and $i \neq j$. But both these operations change the wedge product of the vectors at most by a multiplicative scalar, since

$$
\eta^1 \wedge \cdots \wedge \eta^{i-1} \wedge (\eta^i + \lambda \eta^j) \wedge \eta^{i+1} \wedge \cdots \wedge \eta^k = \eta^1 \wedge \cdots \wedge \eta^{i-1} \wedge \eta^i \wedge \eta^{i+1} \wedge \cdots \wedge \eta^k
$$

and

$$
\eta^1 \wedge \cdots \wedge \eta^{i-1} \wedge (\lambda \eta^i) \wedge \eta^{i+1} \wedge \cdots \wedge \eta^k = \lambda \eta^1 \wedge \cdots \wedge \eta^{i-1} \wedge \eta^i \wedge \eta^{i+1} \wedge \cdots \wedge \eta^k
$$
by multi-linearity.

(iii) On the space $V = \mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n$, let $(\alpha^0, \ldots, \alpha^{n-1}, \beta^0, \ldots, \beta^{n-1})$ be the dual of the standard base. Consider the alternating 2-tensor

$$
\omega = \sum_{i} \alpha^{i} \wedge \beta^{i} \in \text{Alt}^{2} V.
$$

Compute the 2n-tensor

$$
\frac{1}{n!}\underbrace{\omega\wedge\cdots\wedge\omega}_{n\text{ factors}}.
$$

Solution. Define for each $i \in n = \{0, \ldots, n-1\}$ the alternating 2-tensor $\omega^i = \alpha^i \wedge \beta^i$. Note that $\omega^i \wedge \omega^i = 0$, and that $\omega^i \wedge \omega^j = \omega^j \wedge \omega^i$ since the exterior product of alternating tensors is commutative when at least one of the two factors has even degree.

By the distributive law, we have

$$
\underbrace{\omega \wedge \cdots \wedge \omega}_{n \text{ factors}} = \sum_{I=(i_0,\ldots,i_{n-1}) \in \underline{n}^n} \omega^{i_0} \wedge \cdots \wedge \omega^{i_{n-1}}.
$$

However, the wedge product vanishes when I has repeated values, therefore we need only consider the case when I is a permutation. Thus

$$
\frac{1}{n!} \underbrace{\omega \wedge \cdots \wedge \omega}_{n \text{ factors}} = \frac{1}{n!} \sum_{\sigma \in S_n} \omega^{\sigma(0)} \wedge \cdots \wedge \omega^{\sigma(n-1)}
$$

$$
= \frac{1}{n!} \sum_{\sigma \in S_n} \omega^0 \wedge \cdots \wedge \omega^{n-1}
$$

$$
= \omega^0 \wedge \cdots \wedge \omega^{n-1}
$$

$$
= \alpha^0 \wedge \beta^0 \wedge \cdots \wedge \alpha^{n-1} \wedge \beta^{n-1}.
$$

 \Box

Exercise 10.5. A tensor $T \in \text{Ten}^k V$ is symmetric if it satisfies $T(X_{\sigma(0)}, \ldots, X_{\sigma(k-1)}) =$ $T(X_0, \ldots, X_{k-1})$ for each permutation σ and vectors $X_0, \ldots, X_{k-1} \in V$. Denote $\text{Sym}^k V$ the subspace of Ten^k V consisting of the symmetric tensors. Show that Ten² V = Alt² V \oplus Sym² V for any real vector space V.

Solution. We can write any tensor $T \in \text{Ten}^2 V$ as a sum $T = \frac{1}{2}$ $\frac{1}{2}(T+\sigma T) + \frac{1}{2}(T-\sigma T),$ where σ is the nontrivial permutation of $\{0, 1\}$. The tensor $\frac{1}{2}(T + \sigma T)$ is symmetric and the tensor $\frac{1}{2}(T - \sigma T)$ is alternating. This shows that $\text{Alt}^2 V + \text{Sym}^2 V = \text{Ten}^2 V$.

We also have to show that $\text{Alt}^2 V \cap \text{Sym}^2 V = \{0\}$. Let $T \in \text{Alt}^2 V \cap \text{Sym}^2 V$. Then for any vectors $X, Y \in V$ we have $T(X, Y) = T(Y, X) = -T(X, Y)$, therefore $T(X, Y) = 0$. This shows that $T = 0$.