
Introduction to Differentiable Manifolds
EPFL – Fall 2021 M. Cossarini, B. Santos Correia

Solutions Series 10 - Tensors 2021–12–14

Exercise 10.1. On the plane R2 with the standard coordinates (x, y) consider the

1-form θ = x dy. Compute the integral of θ along each side of the square [1, 2]× [3, 4],

with each of the two orientations. (There are 8 numbers to compute.)

Solution. The four integrals along the horizontal sides are zero because dy ≡ 0 on

any horizontal line.

Along a vertical line given by an equation x = c, with c ∈ R a constant, the

vector field θ coincides with the 1-form cdy ∈ Ω1(R2), which is the differential of the

function hc(x, y) = cy. Therefore the integral of θ along a segment of such a vertical

line is equal to the variation of the function hc along this segment.

Along the segment {2} × [3, 4] we have c = 2, thus the integral of θ is 2 if we go

upwards and -2 if we go downwards. Similarly, along the segment {1}× [3, 4] we have

c = 1, thus the integral of θ is 1 if we go upwards and -1 if we go downwards. �

Exercise 10.2. Let B = (Ei)i and B̃ = (Ẽj)j be two bases of a vector space V ' Rn,

and let B∗ = (εi)i and B̃∗ = (ε̃j)j be the respective dual bases. Note that a tensor

T ∈ Tenk V can be written as

T =
∑

i0,...,ik−1

Ti0,...,ik−1
εi0⊗· · ·⊗εik−1 or as T =

∑
j0,...,jk−1

T̃j0,...,jk−1
ε̃j0⊗· · ·⊗ε̃jk−1 .

Find the transformation law that expresses the coefficients T̃j0,...,jk−1
in terms of the

coefficients Ti0,...,ik−1
.

Solution. There exists an invertible n × n matrix (aij)i,j∈n such that Ẽj =
∑

i a
i
jEi.

For any k-index J = (j0, . . . , jk−1) ∈ nk we have

T̃J = T (ẼJ) = T (Ẽj0 , . . . , Ẽjk−1
) = T

∑
i0∈n

ai0j0 Ei0 , . . . ,
∑

ik−1∈n
a
ik−1

jk−1
Eik−1


=

∑
I∈nk

ai0j0 · · · a
ik−1

jk−1
T (Ei0 , . . . , Eik−1

)

=
∑
I∈nk

ai0j0 · · · a
ik−1

jk−1
TI .

�

Exercise 10.3 (Alternating covariant tensors). Let V be a finite-dimensional real

vector space.

(a) Let T ∈ Tenk V . Suppose that with respect to some basis εi of V ∗

T =
∑

1≤i1,...,ik<n
Ti1···ikε

i1 ⊗ · · · ⊗ εik .

Show that T is alternating iff for all σ ∈ Sk: Tiσ(1)···iσ(k) = sgn(σ)Ti1···ik .

Solution. Suppose that T is alternating, then for all σ ∈ Sn we have

Tiσ(1),...,iσ(k) = T (Eiσ(1) , . . . , Eiσ(k)) = sgn(σ)T (Ei1 , . . . , Eik) = sgn(σ)Ti1,...,ik

Conversely if Tiσ(1),...,iσ(k) = sgnσ Ti1,...,ik for all σ ∈ Sn, then in particular

Tα1,...,αi,...,αj ,...,αk = −Tα1,...,αj ,...,αi,...,αk
1
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Then for any X1, . . . , Xk ∈ V the multi-linearity of T yields (we use the

summation convention where repeated indices are summed over)

T (X1, . . . , Xi, . . . , Xj , . . . , Xk)

= T (Xα1
1 Eα1 , . . . , X

αi
i Eαi , . . . , X

αj
j Eαj , . . . , X

αk
k Eαk)

= Xα1
1 . . . Xαk

k T (Eα1 , . . . , Eαi , . . . , Eαj , . . . , Eαk)

= −Xα1
1 . . . Xαk

k T (Eα1 , . . . , Eαj , . . . , Eαi , . . . , Eαk)

= −T (X1, . . . , Xj , . . . , Xi, . . . , Xk)

Hence T is alternating. �

(b) Show that for any covectors ω1, . . . , ωk ∈ V ∗ and vectors X1, . . . , Xk ∈ V we

have

ω1 ∧ · · · ∧ ωk(X1, . . . , Xk) = det(ωi(Xj)).

Solution. Both sides are multilinear in the ωi and so the result follows from

the one for the basis covectors ωi = ε`i , which we have seen in the lecture.

Nevertheless, let us carry out the argument in detail. In the lecture we saw

ε`1 ∧ · · · ∧ ε`k(X1, . . . , Xk) = det(ε`r(Xj))
j
r

(on the right hand side we have the determinant of a k × k matrix (r, j =

1, . . . k; think of j as the column index and r as the row index).

Now for arbitrary covectors ωr =
∑n

`=1 ω
r
`ε
` we have (for the first equality

we use the multilinearity of the wedge product)

ω1 ∧ · · · ∧ ωk(X1, . . . , Xk) =
n∑

`1=1

· · ·
n∑

`k=1

ω1
`1 · · ·ω

k
`k
ε`1 ∧ · · · ∧ ε`k(X1, . . . , Xk)

=

n∑
`1=1

· · ·
n∑

`k=1

ω1
`1 · · ·ω

k
`k

det(ε`r(Xj))
j
r

=

n∑
`1=1

· · ·
n∑

`k=1

ω1
`1 · · ·ω

k
`k

det

ε
`1(X1) · · · ε`1(Xk)

...
...

ε`k(X1) · · · ε`k(Xk)


= det(ωr(Xj))

i
r

where in the last step we multiplied the r-th line by ωr`r and replaced
∑n

`r=1 ω
r
`r
ε`r =

ωr.

�

Exercise 10.4 (Some practice with the wedge product). Let V be a finite-dimensional

vector space over R.

(i) Show that the covectors ω1, . . . , ωk ∈ V ∗ are linearly dependent if and only if

ω1 ∧ · · · ∧ ωk = 0.

Solution. Let {ω1, . . . , ωk} be a linearly dependent set. Then, without loss of

generality, we suppose

ω1 =
k∑
j=2

ajω
j

where (aj) ∈ R. Considering the wedge product, we have

ω1 ∧ · · · ∧ ωk = (
k∑
j=2

ajω
j) ∧ · · · ∧ ωk = 0

where the last inequality follows from the fact that for any 1-covector α, one

has α ∧ α = 0. Conversely, suppose that ω1, . . . , ωk are linearly independent
2
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and extend it to a basis for V ∗ and let {v1, . . . , vn} be the dual basis for V .

Then we have

ω1 ∧ · · · ∧ ωk(v1, . . . , vk) = 1

hence ω1 ∧ · · · ∧ ωk 6= 0. �

(ii) Let {ω1, . . . , ωk} and {η1, . . . , ηk} both be sets of k independent covectors.

Show that they span the same subspace if and only if

ω1 ∧ · · · ∧ ωk = c η1 ∧ · · · ∧ ηk

for some nonzero real number c.

Solution. “⇐” Assume that Span(ω1, . . . , ωk) 6= Span(η1, . . . , ηk), so without

loss of generality that w1 /∈ Span(η1, . . . , ηk). Then the covectors w1, η1, . . . , ηk

are linearly independent, and thus by (i) we have w1 ∧ η1 ∧ · · · ∧ ηk 6= 0. But

by assumption we know that ω1 ∧ · · · ∧ ωk = c η1 ∧ · · · ∧ ηk for some non-zero

constant c ∈ R. Hence

w1 ∧ η1 ∧ · · · ∧ ηk =
1

c
w1 ∧ ω1 ∧ · · · ∧ ωk = 0

in contradiction with the previous statement.

“⇒” If ω1, . . . , ωk and η1, . . . , ηk span the same subspace then the basis

ω1, . . . , ωk of this subspace can be obtained from η1, . . . , ηk by a finite sequence

of basis exchange operations ηi 7→ ηi+ληj and ηi = ληi for a non-zero constant

λ ∈ R and i 6= j. But both these operations change the wedge product of the

vectors at most by a multiplicative scalar, since

η1 ∧ · · · ∧ ηi−1 ∧ (ηi + ληj) ∧ ηi+1 ∧ · · · ∧ ηk = η1 ∧ · · · ∧ ηi−1 ∧ ηi ∧ ηi+1 ∧ · · · ∧ ηk

and

η1 ∧ · · · ∧ ηi−1 ∧ (ληi) ∧ ηi+1 ∧ · · · ∧ ηk = λ η1 ∧ · · · ∧ ηi−1 ∧ ηi ∧ ηi+1 ∧ · · · ∧ ηk

by multi-linearity. �

(iii) On the space V = R2n = Rn × Rn, let (α0, . . . , αn−1, β0, . . . , βn−1) be the

dual of the standard base. Consider the alternating 2-tensor

ω =
∑
i

αi ∧ βi ∈ Alt2 V.

Compute the 2n-tensor

1

n!
ω ∧ · · · ∧ ω︸ ︷︷ ︸
n factors

.

Solution. Define for each i ∈ n = {0, . . . , n − 1} the alternating 2-tensor

ωi = αi ∧ βi. Note that ωi ∧ ωi = 0, and that ωi ∧ ωj = ωj ∧ ωi since the

exterior product of alternating tensors is commutative when at least one of

the two factors has even degree.

By the distributive law, we have

ω ∧ · · · ∧ ω︸ ︷︷ ︸
n factors

=
∑

I=(i0,...,in−1)∈nn
ωi0 ∧ · · · ∧ ωin−1 .

However, the wedge product vanishes when I has repeated values, therefore

we need only consider the case when I is a permutation. Thus

1

n!
ω ∧ · · · ∧ ω︸ ︷︷ ︸
n factors

=
1

n!

∑
σ∈Sn

ωσ(0) ∧ · · · ∧ ωσ(n−1)

=
1

n!

∑
σ∈Sn

ω0 ∧ · · · ∧ ωn−1

= ω0 ∧ · · · ∧ ωn−1

= α0 ∧ β0 ∧ · · · ∧ αn−1 ∧ βn−1.
3
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�

Exercise 10.5. A tensor T ∈ Tenk V is symmetric if it satisfies T (Xσ(0), . . . , Xσ(k−1)) =

T (X0, . . . , Xk−1) for each permutation σ and vectors X0, . . . , Xk−1 ∈ V . Denote

Symk V the subspace of Tenk V consisting of the symmetric tensors. Show that

Ten2 V = Alt2 V ⊕ Sym2 V for any real vector space V .

Solution. We can write any tensor T ∈ Ten2 V as a sum T = 1
2(T +σT ) + 1

2(T −σT ),

where σ is the nontrivial permutation of {0, 1}. The tensor 1
2(T + σT ) is symmetric

and the tensor 1
2(T −σT ) is alternating. This shows that Alt2 V + Sym2 V = Ten2 V .

We also have to show that Alt2 V ∩ Sym2 V = {0}. Let T ∈ Alt2 V ∩ Sym2 V .

Then for any vectors X,Y ∈ V we have T (X,Y ) = T (Y,X) = −T (X,Y ), therefore

T (X,Y ) = 0. This shows that T = 0. �
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