Exercise 11.1. Let $T \in \operatorname{Ten}^{k}(V)$ be a tensor on a real vector space V, and let $T_{I}=T\left(E_{I}\right)$, defined for any multi-index $I=\left(i_{0}, \ldots, i_{k-1}\right)$ be the coefficients of T w.r.t. some base $\left(E_{i}\right)_{i}$ of V. Show that $(\sigma T)_{I}=T_{\sigma^{*} I}$ for any permutation $\sigma \in S_{k}$

Solution. Denote $J=\left(j_{0}, \ldots, j_{k-1}\right)=\sigma^{*} I=\left(i_{\sigma(0)}, \ldots, i_{\sigma(k-1)}\right)$ Then

$$
\begin{aligned}
(\sigma T)_{I} & =(\sigma T)\left(E_{i_{0}}, \ldots, E_{i_{k-1}}\right) \\
& =T\left(E_{i_{\sigma(0)}}, \ldots, E_{i_{\sigma(k-1)}}\right) \\
& =T\left(E_{j_{0}}, \ldots, E_{j_{k-1}}\right) \\
& =T_{\sigma^{*} I}
\end{aligned}
$$

Exercise 11.2. Let M be a \mathcal{C}^{r+1} manifold and let ω be a differential k-form on M. We say that ω is \mathcal{C}^{r} at some point $p \in M$ if the component functions of ω w.r.t. some chart φ (that is defined at p) are \mathcal{C}^{r} at p. Show that this does not depend on which chart φ we use.

Solution. Take two charts $\varphi, \widetilde{\varphi}$ that are defined at p. Their coordinate vectors are related by the formula $\frac{\partial}{\partial \widetilde{\varphi}^{j}}=\sum_{i} \frac{\partial \varphi^{i}}{\partial \widetilde{\varphi}^{j}} \frac{\partial}{\partial \varphi^{i}}$. Using the transformation law for covariant k-tensors, we have

$$
\widetilde{\omega}_{J}=\sum_{I=\left(i_{0}, \ldots, i_{k-1}\right) \in \underline{n}^{k}} \frac{\partial \varphi^{i_{0}}}{\partial \widetilde{\varphi}^{j_{0}}} \cdots \frac{\partial \varphi^{i_{k-1}}}{\partial \widetilde{\varphi}^{j_{k-1}}} \omega_{I}
$$

If the functions ω_{I} are \mathcal{C}^{r} at p, since the functions $\frac{\partial \varphi^{i}}{\partial \varphi^{j}}$ are also \mathcal{C}^{r} (because the transition map $\varphi \circ \widetilde{\varphi}^{-1}$ is \mathcal{C}^{r+1}) we conclude that the functions $\widetilde{\omega}_{J}$ are \mathcal{C}^{r} at p.

Exercise 11.3. The goal of this exercise is to show that the wedge product of alternating covariant tensors in a real vector space V is associative.
(a) If a tensor $T \in \operatorname{Ten}^{k} V$ is alternating, show that $A(T)=k!T$.
(b) For two tensors $S \in \operatorname{Ten}^{k} V, T \in \operatorname{Ten}^{\ell} V$, show that

$$
\begin{aligned}
& A(A(S) \otimes T)=k!A(S \otimes T) \\
& A(S \otimes A(T))=\ell!A(S \otimes T)
\end{aligned}
$$

(c) Show that the wedge product of alternating tensors $S \in \mathrm{Alt}^{k} V, T \in \mathrm{Alt}^{\ell} V$, $R \in \mathrm{Alt}^{m} V$ is associative:

$$
S \wedge(T \wedge R)=S \wedge T \wedge R=(S \wedge T) \wedge R
$$

Solution. See Tu's book "An Introduction to Manifolds", Proposition 3.25.
Exercise 11.4. For a point $p \in \mathbb{R}^{3}$ and vectors $v, w \in \mathrm{~T}_{p} \mathbb{R}^{3} \equiv \mathbb{R}^{3}$ we define $\left.\omega\right|_{p}(v, w):=\operatorname{det}(p|v| w)$. Show that ω is a smooth differential 2-form on \mathbb{R}^{3}, and express ω as a linear combination of the elementary alternating 2-forms determined by the standard coordinate chart $\left(x^{0}, x^{1}, x^{2}\right)$.

Solution. For each point $p \in \mathbb{R}^{3}$, the function $\left.\omega\right|_{p}(v, w)=\operatorname{det}(p|v| w)$ is linear on each of its two variables $v, w \in \mathbb{R}^{3}$, and also alternating, therefore ω is a differential
form. The elementary covector fields are $\mathrm{d} x^{0}, \mathrm{~d} x^{1}, \mathrm{~d} x^{2}$, and the elementary 2-forms are $\mathrm{d} x^{0} \wedge \mathrm{~d} x^{1}, \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}$ and $\mathrm{d} x^{2} \wedge \mathrm{~d} x^{0}$. The calculation

$$
\begin{aligned}
\left.\omega\right|_{p}(v, w)=\operatorname{det}\left(\begin{array}{ccc}
p^{0} & v^{0} & w^{0} \\
p^{1} & v^{1} & w^{1} \\
p^{2} & v^{2} & w^{2}
\end{array}\right)= & p^{0}\left(v^{1} w^{2}-v^{2} w^{1}\right) \\
& +p^{1}\left(v^{2} w^{0}-v^{0} w^{2}\right) \\
& +p^{2}\left(v^{0} w^{1}-v^{1} w^{0}\right)
\end{aligned}
$$

shows that

$$
\begin{aligned}
\left.\omega\right|_{p}= & p^{0} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \\
& +p^{1} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{0} \\
& +p^{2} \mathrm{~d} x^{0} \wedge \mathrm{~d} x^{1}
\end{aligned}
$$

Thus the component functions of ω are the functions $p \mapsto p^{i}$ which are smooth. This shows that ω is a smooth 2 -form.

Exercise 11.5 (Some properties of the pullback of differential forms). For $F: M \rightarrow$ N a smooth map between smooth manifolds, $\omega \in \Omega^{k}(N), \beta \in \Omega^{\ell}(N)$ we have:
(a) $F^{*}(\alpha \wedge \beta)=F^{*}(\alpha) \wedge F^{*}(\beta)$.

Solution. Fix $p \in M$ and $X_{0}, \ldots, X_{k+\ell-1} \in \mathrm{~T}_{p} M$. We have to show that

$$
F^{*}\left(\alpha_{F(p)} \wedge \beta_{F(p)}\right)\left(X_{0}, \ldots, X_{k+\ell-1}\right)=\left(F^{*} \alpha_{F(p)} \wedge F^{*} \alpha_{F(p)}\right)\left(X_{0}, \ldots, X_{k+\ell-1}\right)
$$

From the definition of pullback and wedge product we have

$$
\begin{aligned}
& F^{*}\left(\alpha_{F(p)} \wedge \beta_{F(p)}\right)\left(X_{0}, \ldots, X_{k+\ell-1}\right) \\
& =\alpha_{F(p)} \wedge \beta_{F(p)}\left(F_{*} X_{0}, \ldots, F_{*} X_{k+\ell-1}\right) \\
& =\frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sgn} \sigma \alpha_{F(p)}\left(F_{*} X_{\sigma(0)}, \ldots, F_{*} X_{\sigma(k-1)}\right) \beta_{F(p)}\left(F_{*} X_{\sigma(k)}, \ldots, F_{*} X_{\sigma(k+\ell-1)}\right) \\
& =\frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sgn} \sigma F^{*} \alpha_{F(p)}\left(X_{\sigma(0)}, \ldots, X_{\sigma(k-1)}\right) F^{*} \beta_{F(p)}\left(X_{\sigma(k)}, \ldots, X_{\sigma(k+\ell-1)}\right) \\
& =\left(F^{*} \alpha_{F(p)} \wedge F^{*} \beta_{F(p)}\right)\left(X_{0}, \ldots, X_{k+\ell-1}\right)
\end{aligned}
$$

(b) In any coordinate chart y^{i} on N,

$$
F^{*}\left(\sum_{\substack{I=\left(i_{0}, \ldots, i_{k-1}\right) \\ 0 \leq i_{0}, \ldots, i_{k-1}<n}} \omega_{I} \mathrm{~d} y^{I}\right)=\sum_{\substack{I=\left(i_{0}, \ldots, i_{k-1}\right) \\ 0 \leq i_{0}, \ldots, i_{k-1}<n}}\left(\omega_{I} \circ F\right) \mathrm{d}\left(y^{i_{0}} \circ F\right) \wedge \cdots \wedge \mathrm{d}\left(y^{i_{k-1}} \circ F\right)
$$

Solution. Observation: From the definition of the pullback F^{*} it follows immediately that

$$
F^{*}(\omega+\eta)=F^{*} \omega+F^{*} \eta, \quad F^{*}(f \omega)=(f \circ F) F^{*} \omega
$$

for $\omega, \eta \in \Omega^{k}(N), f \in C^{\infty}(N)$. In addition to this we use the following properties of the pullback of 1-forms: let $f \in C^{\infty}(N)$, and $\omega \in \Omega^{1}(N)$, then $F^{*} \mathrm{~d} f=\mathrm{d}(f \circ F)$ and $F^{*}(f \sigma)=(f \circ F) F^{*} \sigma$.

Denoting $I=\left(i_{0}, \ldots, i_{k-1}\right)$ an increasing multi-index (i.e. such that $0 \leq$ $\left.i_{0}, \ldots, i_{k-1}<n\right)$, we have

$$
\begin{aligned}
F^{*}\left(\sum_{I} \omega_{I} \mathrm{~d} y^{I}\right) & =F^{*}\left(\sum_{I} \omega_{I} \mathrm{~d} y^{i_{0}} \wedge \cdots \wedge \mathrm{~d} y^{i_{k-1}}\right) \\
& =\sum_{I}\left(\omega_{I} \circ F\right) F^{*}\left(\mathrm{~d} y^{i_{0}} \wedge \cdots \wedge \mathrm{~d} y^{i_{k-1}}\right) \\
& =\sum_{I}\left(\omega_{I} \circ F\right)\left(F^{*} \mathrm{~d} y^{i_{0}}\right) \wedge \cdots \wedge\left(F^{*} \mathrm{~d} y^{i_{k-1}}\right) \\
& =\sum_{I}\left(\omega_{I} \circ F\right) \mathrm{d}\left(y^{i_{0}} \circ F\right) \wedge \cdots \wedge \mathrm{d}\left(y^{i_{k-1}} \circ F\right)
\end{aligned}
$$

(c) $F^{*}(\omega) \in \Omega^{k}(M)$.

Solution. The last line above is a local expression for $F^{*} \omega$ defined on the preimage of the domain of the chart $\left(y^{i}\right)$ by F. The coefficients $\omega_{I} \circ F$ are smooth because $\omega_{I}=\omega_{i_{0}, \ldots, i_{k-1}}$ are the component functions of a k-form and hence smooth. The functions $y^{i_{s}} \circ F$ are smooth as well and hence their differentials are smooth 1 -forms. Now the only missing ingredient is that the wedge product of a smooth differential forms is a smooth differential form. But this is clear because the component functions of the wedge product are sums of products of component functions of the original forms and hence smooth.

