Exercise 12.1. Show that the torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ is orientable.

Solution. Let $\pi : \mathbb{R}^n \to \mathbb{T}^n$ be the projection map. For each open set $U \subseteq \mathbb{R}^n$ such that π is injective on U, the map $\varphi = \pi|_U$ is a local parametrization of \mathbb{T}^n , and the parametrizations of this kind form an atlas \mathcal{A} of \mathbb{T}^n . Each transition map $\varphi^{-1} \circ \psi$, with $\varphi, \psi \in \mathcal{A}$, is locally a translation, therefore we have $D_{\widetilde{p}}(\varphi^{-1} \circ \psi) = id_{\mathbb{R}^n}$ for all points \widetilde{p} . Since sgn det $id_{\mathbb{R}^n} = +1$, there is an orientation on \mathbb{T}^n such that all the charts $\varphi \in \mathcal{A}$ are positive.

Exercise 12.2. Show that a product $M_0 \times \cdots \times M_{k-1}$ of several orientable manifolds is naturally oriented.

Solution. Suppose each manifold M_i has an orientation \mathcal{O}_i . We will show how to produce a natural orientation, denoted $\prod_i \mathcal{O}_i$, on the product manifold $\prod_{0 \le i < k} M_i$. Let $\pi_i : \prod_i M_i \to M_i$ be the projection map for $i \in \underline{k} = \{0, \ldots, k-1\}$.

We first recall how we construct an atlas for the product manifold. Suppose we have for each manifold M_i a connected chart $\varphi_i : U_i \to \mathbb{R}^{n_i}$, where $n_i = \dim M_i$. (A "connected chart" is a chart whose domain is connected. Note that any manifold is covered by its connected charts. Here we require that each chart φ_i be connected to ensure that it has a constant sign $\operatorname{sgn}_{\mathcal{O}_i} \varphi_i = \pm 1$ according to the orientatation \mathcal{O}_i .) Using the charts φ_i we construct a product chart

$$\Phi = \prod_i \varphi_i \circ \pi_i : \prod_i U_i \to \prod_i \mathbb{R}^{n_i} \\ x \mapsto (\varphi_i(\pi_i(x)))_i$$

of the product manifold $\prod_i M_i$. The charts $\Phi = \prod_i \varphi_i \circ \pi_i$ of this kind form an atlas \mathcal{A} of the manifold $\prod_i M_i$. Let us define the sign of a chart $\Phi = \prod_i \varphi_i \circ \pi_i$ as above as

$$s(\Phi) := \prod_i \operatorname{sgn}_{\mathcal{O}_i} \varphi_i.$$

Let us show that these function $s : \mathcal{A} \to \{\pm 1\}$ is an orientation sign function. Suppose we have a second chart $\Psi = \prod_i \psi_i \circ \pi_i$, where each (V_i, ψ_i) is a chart of M_i . Then the differential of the transition map $\Psi \circ \Phi^{-1}$ at any point $\widetilde{P} = \prod_i \varphi_i(p_i)$, where $p_i \in U_i \cap V_i$, is represented by a diagonal block matrix

$$\begin{bmatrix} \mathbf{D}_P \left(\Phi \circ \Phi^{-1} \right) \end{bmatrix} = \operatorname{diag} \begin{bmatrix} \mathbf{D}_{\varphi(p_i)}(\psi_i \circ \varphi_i^{-1}) \end{bmatrix}_i$$
$$= \begin{pmatrix} \begin{bmatrix} \mathbf{D}_{\varphi(p_0)}(\psi_0 \circ \varphi_0^{-1}) \end{bmatrix} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \begin{bmatrix} \mathbf{D}_{\varphi(p_{k-1})}(\psi_{k-1} \circ \varphi_{k-1}^{-1}) \end{bmatrix} \end{pmatrix}.$$

The determinant of this matrix is

$$\det \left[\mathbf{D}_P \left(\Phi \circ \Phi^{-1} \right) \right] = \prod_i \det \left[\mathbf{D}_{\varphi(p_i)} (\psi_i \circ \varphi_i^{-1}) \right],$$

and the sign of this determinant is

$$\operatorname{sgn} \det \left[\operatorname{D}_P \left(\Phi \circ \Phi^{-1} \right) \right] = \prod_i \operatorname{sgn} \det \left[\operatorname{D}_{\varphi(p_i)}(\psi_i \circ \varphi_i^{-1}) \right] = \prod_i \operatorname{sgn} \psi_i \cdot \operatorname{sgn} \varphi_i$$
$$= s(\Phi) \cdot s(\Psi).$$

(Here we used the fact that $\operatorname{sgn} \det \left[\operatorname{D}_{\varphi(p_i)}(\psi_i \circ \varphi_i^{-1}) \right] = \operatorname{sgn}_{\mathcal{O}_i} \psi_i \cdot \operatorname{sgn}_{\mathcal{O}_i} \varphi_i$.) Thus there is an orientation, denoted $\prod_i \mathcal{O}_i$, on the product manifold $\prod_i M_i$ such that $\operatorname{sgn}_{\prod_i \mathcal{O}_i}(\Phi) = s(\Phi)$ for each connected chart $\Phi = \prod_i \varphi_i \circ \pi_i$ as constructed above. \Box

Exercise 12.3. Let M be a differentiable n-manifold. Show that the sign sgn ω of a nonvanishing n-form on M, defined by

$$(\operatorname{sgn} \omega)|_p(X_0, \dots, X_{n-1}) := \operatorname{sgn}(\omega|_p(X_0, \dots, X_{n-1}))$$

for $p \in M$ and $X_0, \ldots, X_{n-1} \in T_p M$, is an orientation on M.

Solution. First part: Let us check that for each point $p \in M$, the function $\mathcal{O}_p =$ sgn $\circ \omega_p$ that sends a base $B = (B_i)_{0 \le i \le n}$ of $T_p M$ to the number sgn $(\omega|_p (B_0, \ldots, B_{n-1})) =$ ± 1 is an orientation on $T_p M$. We have to show that

$$\mathcal{O}_p(BC) = \mathcal{O}_p(B) \cdot \operatorname{sgn} \det C,$$

for any base B and any invertible matrix $C \in \mathbb{R}^{n \times n}$. For this it suffices to show that

$$\omega_p(BC) = \omega_p(B) \cdot \det C$$

for any base B and any invertible matrix $C \in \mathbb{R}^{n \times n}$. Since any invertible matrix C can be decomposed as a product of elementary matrices (such as $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$,

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \lambda \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{pmatrix}), \text{ it is sufficient to prove that } \omega_p(BC) = \omega_p(B) \cdot \det C$

when C is an elementary matrix. And this, in turn, follows from the fact that ω_p is multilinear and alternating:

- If C is a transposition matrix (which coincides with the identity matrix except at four coefficients $T_{i,i} = T_{j,j} = 0$, $T_{i,j} = T_{j,i} = 1$), then $\omega_p(BC) = -\omega_p(B)$ since ω_p is skew-symmetric. On the other hand we have det C = -1, thus the equation $\omega_p(BC) = \omega_p(B) \cdot \det C$ holds.
- If $C = I + \lambda E_{j,i}$, with $i \neq j$, then

$$\omega_p(BC) = \omega_p(B_0, \dots, B_i + \lambda B_j, \dots, B_{n-1}) = \omega_p(B)$$

since ω_p is multilinear and alternating. Since on the other hand we have det C = 1, the equation $\omega_p(BC) = \omega_p(B) \cdot \det C$ holds.

• If C is a diagonal matrix where $C_{i,i} = \lambda \in \mathbb{R}$ and $C_{j,j} = 1$ for $j \neq i$, then

$$\omega_p(BC) = \omega_p(B_0, \dots, \lambda B_i, \dots, B_{n-1}) = \lambda \omega_p(B_0, \dots, B_{n-1})$$

by linearity of ω_p . On the other hand we have det $C = \lambda$, thus again the equation $\omega_p(BC) = \omega_p(B) \cdot \det C$ holds.

Second part: Let us show that the orientation field \mathcal{O} is continuous. We take a connected chart (U, φ) and write $\omega|_U = h \, \mathrm{d} \varphi^0 \wedge \cdots \wedge \mathrm{d} \varphi^{n-1}$, where $h : U \to \mathbb{R}$ is a continuous function. Note that h does not vanish, therefore it has constant sign. Therefore the map

$$p \in U \mapsto \mathcal{O}_p\left(\left.\frac{\partial}{\partial \varphi^0}\right|_p, \dots, \left.\frac{\partial}{\partial \varphi^{n-1}}\right|_p\right) = \operatorname{sgn} \omega_p\left(\left.\frac{\partial}{\partial \varphi^0}\right|_p, \dots, \left.\frac{\partial}{\partial \varphi^{n-1}}\right|_p\right) = \operatorname{sgn} h(p)$$

is constant on U. This shows that the orientation \mathcal{O} is continuous on U.

Exercise 12.4. Show that the projective plane \mathbb{P}^2 is not orientable.

Solution. Recall that the projective plane is $\mathbb{P}^2 := \mathbb{R}^3 \setminus \{0\} / \sim$, where $x \sim y$ iff $x = \lambda y$ for $\lambda \in \mathbb{R} \setminus \{0\}$. Assume, for a contradiction, that \mathbb{P}^2 is orientable.

We will use the charts (U, φ) , (V, ψ) , where

$$U = \{ [x, y, z] \in \mathbb{P}^2 : z \neq 0, \qquad \varphi([x, y, z]) = \left(\frac{x}{z}, \frac{y}{z}\right)$$
$$V = \{ [x, y, z] \in \mathbb{P}^2 : x \neq 0, \qquad \psi([x, y, z]) = \left(\frac{y}{x}, \frac{z}{x}\right).$$

These two charts do not cover the manifold \mathbb{P}^2 , but they are enough for our purpose. Since these charts are connected, to prove that \mathbb{P}^2 is not orientable it suffices to show that the determinant of the differential of transition map $\varphi \circ \psi^{-1}$ does not have constant sign.

Let us compute this determinant. Since $\psi^{-1}(y,z) = [1, y, z]$, the transition map is

$$\varphi \circ \psi^{-1} : (y, z) \mapsto [1, y, z] \mapsto \left(\frac{1}{z}, \frac{y}{z}\right),$$

defined for $(y, z) \in \mathbb{R}^2$ such that $z \neq 0$. The differential of this transition map is represented by the matrix

$$\left[\mathbf{D}_{(y,z)}(\varphi \circ \psi^{-1})\right] = \begin{pmatrix} 0 & -\frac{1}{z^2} \\ \frac{1}{z} & -\frac{y}{z^2} \end{pmatrix}$$

which has determinant

$$\det[\mathbf{D}_{(y,z)}(\varphi \circ \psi^{-1})] = \det\begin{pmatrix} 0 & -\frac{1}{z^2} \\ \frac{1}{z} & -\frac{y}{z^2} \end{pmatrix} = \frac{1}{z^3}.$$

This value does not have constant sign, as we had to show.

 \square

Exercise 12.5. Show that the Möbius band is not orientable.

Solution. The Möbius band M is the quotient space of \mathbb{R}^2 by the equivalence relation

$$(x,y) \sim (x',y') \iff x'-x = n \in \mathbb{Z} \text{ and } y' = (-1)^n y$$

Let us show that it is not orientable. Suppose, for a contradiction, that M has an orientation \mathcal{O} . Let $\pi : \mathbb{R}^2 \to M$ be the quotient map. We take an atlas consisting of two parametrizations $\varphi = \pi|_U$ and $\psi = \pi|_V$, where $U = (0, 1) \times \mathbb{R}$ and $V = (\frac{1}{2}, \frac{3}{2}) \times \mathbb{R}$. Since the two sets U, V are connected, each of the two parametrizations φ, ψ has a constant sign w.r.t. the orientation \mathcal{O} , therefore the transition map $\psi^{-1} \circ \varphi$ must have a constant sign as well. However, the transition map is

$$\psi^{-1} \circ \varphi(x, y) = \begin{cases} (x, y) & \text{if } x \in (\frac{1}{2}, 1) \\ (x, -y) & \text{if } x \in (0, \frac{1}{2}) \end{cases}$$

and the sign

sgn det
$$\mathcal{D}_{(x,y)}(\psi^{-1} \circ \varphi) = \begin{cases} 1 & \text{if } x \in (\frac{1}{2}, 1) \\ -1 & \text{if } x \in (0, \frac{1}{2}) \end{cases}$$

is not constant.

1. Manifolds with boundary

Exercise 12.6. Let M be an n-dimensional \mathcal{C}^r manifold with boundary.

(a) Show that its interior Int M and its boundary ∂M are disjoint subsets.

Solution. Suppose there is point p contained on both ∂M and Int M, therefore there are two charts $\varphi : U \to \widetilde{U}$ and $\psi : V \to \widetilde{V}$, where $U, V \subseteq M$ and $\widetilde{U}, \widetilde{V} \subseteq \mathbb{H}^n$ are open sets, such that $\varphi(p) \in \operatorname{Int} \mathbb{H}^n$ and $\psi(p) \in \partial \mathbb{H}^n$.

We may assume (by shrinking \widetilde{U} to $\widetilde{U} \cup \operatorname{Int} \mathbb{H}^n$ and shhrinking U accordingly to $\varphi^{-1}(\widetilde{U} \cup \operatorname{Int} \mathbb{H}^n)$ and restricting φ) that the set \widetilde{U} is contained in $\operatorname{Int} \mathbb{H}^n$ and therefore it is an open subset of \mathbb{R}^n . Also, we may assume that U = V(again, by shrinking U and V to $U \cap V$, and shrinking \widetilde{U} and \widetilde{V} accordingly to $\varphi(U \cap V \text{ and } \psi(U \cap V) \text{ resp.})$. Therefore the transition map $\psi \circ \varphi^{-1} : \widetilde{U} \to \widetilde{V}$ is a diffeomorphism between open subsets of \mathbb{R}^n and \mathbb{H}^n respectively. In particular, the transition map $\psi \circ \varphi^{-1}$ is \mathcal{C}^1 and has injective differential at every point. This implies, by the inverse function theorem, that its image \widetilde{V} is an open subset of \mathbb{R}^n . But since $\widetilde{V} \subseteq \mathbb{H}^n$, this means that $\widetilde{V} \subseteq \operatorname{Int} \mathbb{H}^n$. This contradicts the fact that $\psi(p) \in \partial \mathbb{H}^n$.

Let us show that Int M is an open subset of M. Since

$$\operatorname{Int}(M) = \bigcup_{(U,\varphi) \text{ chart}} U \cap \operatorname{Int} M,$$

thus it suffices to show that $U \cap \operatorname{Int} M$ is open in U for all charts (U, φ) . And indeed, we have $U \cap \operatorname{Int} M = \varphi^{-1}(\operatorname{Int} \mathbb{H}^n)$, and this is an open subset of Usince φ is continuous and $\operatorname{Int} \mathbb{H}^n$ is an open subset of \mathbb{H}^n . \Box

(b) Show that ∂M , endowed with the subspace topology, can be given the structure of an n-1-dimensional \mathcal{C}^r manifold (without boundary) such that the inclusion map into M is \mathcal{C}^r .

Solution. This is done in the lectures.

Exercise 12.7. Prove that a continuous k-form is determined by the value of its integrals (Proposition 7.3.12). *Hint:* Use a chart to move the problem to \mathbb{R}^n , then integrate on small pieces of coordinate planes.

Solution. Suppose that our manifold is an open set $U \subseteq \mathbb{R}^n$ (considered as a \mathcal{C}^1 manifold) and $\omega \in \Omega^k(U)$ is a continuous k-form. We write $\omega = \sum_{I \in \underline{n}^k_{\nearrow}} \omega_I \, \mathrm{d} x^I$. Let $p \in U$ and $I = (i_0, \ldots, i_{k-1}) \in \underline{n}^k$ an increasing k-index. We want to show that $\omega_I(p)$ is determined by values of k-dimensional integrals of ω .

Let $\iota = \iota_{p,I}: \mathbb{R}^k \to \mathbb{R}^n: y \mapsto x$ where

$$x^{i} = \begin{cases} y^{s} & \text{if } i = i_{s} \text{ for some } s \in \underline{k} \\ p^{i} & \text{otherwise.} \end{cases}$$

We restrict ι to the open set $V = \iota^{-1}U$ and note that the point $\tilde{p} = \iota^{-1}(p) = (p^{i_s})_{s \in \underline{k}} \subseteq \mathbb{R}^k$ is contained in V.

The pullback by ι of ω is the continuous k-form $\iota^* \omega = h \, \mathrm{d} y^0 \wedge \cdots \wedge \mathrm{d} y^{k-1} \in \Omega^k(V)$, where $h = \omega_I \circ \iota \in \mathcal{C}(V, \mathbb{R})$.

Denote $D_{\tilde{p},\varepsilon} \subseteq \mathbb{R}^k$ be the closed ball of center \tilde{p} and radius $\varepsilon > 0$ in \mathbb{R}^k , and let $|D_{\tilde{p},\varepsilon}|$ be the volume of this ball. We take ε small enough so that $D_{\tilde{p},\varepsilon} \subseteq V$. Then

$$\frac{1}{|D_{\widetilde{p},\varepsilon}|} \int_{D_{\widetilde{p},\varepsilon}} \iota^* \omega = \frac{1}{|D_{\widetilde{p},\varepsilon}|} \int_{D_{\widetilde{p},\varepsilon}} h = (\text{average value of } h \text{ on } D_{\widetilde{p},\varepsilon}) \xrightarrow{\varepsilon \to 0} h(\widetilde{p}) = \omega_I(p).$$

This means that we can find out the value of $\omega_I(p)$ if we know the value of the integral $\int_{D_{\tilde{p},\varepsilon}} \iota_{p,I}^* \omega$ for every $\varepsilon > 0$. Doing this for each increasing k-index $I \in \underline{n}_{\nearrow}^k$, we find out the value of $\omega|_p$ at the point $p \in U$. Thus any continuous k-form $\omega \in \Omega^k(U)$ is determined by the value of its integrals of the form $\int_{D_{\tilde{p},\varepsilon}} \iota_{p,\varepsilon}^* \omega$.

If M is a general \mathcal{C}^1 manifold and $\omega \in \Omega^k(M)$ is a continuous k-form, we use a local parametrization $\varphi : U \to M$ to get a k-form $\varphi^* \omega \in \Omega^k(U)$, and then as explained above we can determine this k-form if we know the value of the integrals of the kind

$$\int_{D_{\widetilde{p},\varepsilon}} \iota_{p,I}^*(\varphi^*\omega) = \int_{D_{\widetilde{p},\varepsilon}} (\varphi \circ \iota_{p,I})^*\omega$$

But knowing $\varphi^* \omega$ is equivalent to knowing $\omega|_{\varphi(U)}$, thus using different parametrizations (U, φ) we can know ω at all points of M.