Introduction to Differentiable Manifolds
 EPFL - Fall 2021
 M. Cossarini, B. Santos Correia
 Solutions Series 12-Orientations, manifolds w/boundary 2022-01-02

Exercise 12.1. Show that the torus $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ is orientable.
Solution. Let $\pi: \mathbb{R}^{n} \rightarrow \mathbb{T}^{n}$ be the projection map. For each open set $U \subseteq \mathbb{R}^{n}$ such that π is injective on U, the map $\varphi=\left.\pi\right|_{U}$ is a local parametrization of \mathbb{T}^{n}, and the parametrizations of this kind form an atlas \mathcal{A} of \mathbb{T}^{n}. Each transition map $\varphi^{-1} \circ \psi$, with $\varphi, \psi \in \mathcal{A}$, is locally a translation, therefore we have $\mathrm{D}_{\widetilde{p}}\left(\varphi^{-1} \circ \psi\right)=\mathrm{id}_{\mathbb{R}^{n}}$ for all points \widetilde{p}. Since sgn $\operatorname{detid}_{\mathbb{R}^{n}}=+1$, there is an orientation on \mathbb{T}^{n} such that all the charts $\varphi \in \mathcal{A}$ are positive.

Exercise 12.2. Show that a product $M_{0} \times \cdots \times M_{k-1}$ of several orientable manifolds is naturally oriented.

Solution. Suppose each manifold M_{i} has an orientation \mathcal{O}_{i}. We will show how to produce a natural orientation, denoted $\prod_{i} \mathcal{O}_{i}$, on the product manifold $\prod_{0 \leq i<k} M_{i}$. Let $\pi_{i}: \prod_{i} M_{i} \rightarrow M_{i}$ be the projection map for $i \in \underline{k}=\{0, \ldots, k-1\}$.

We first recall how we construct an atlas for the product manifold. Suppose we have for each manifold M_{i} a connected chart $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n_{i}}$, where $n_{i}=\operatorname{dim} M_{i}$. (A "connected chart" is a chart whose domain is connected. Note that any manifold is covered by its connected charts. Here we require that each chart φ_{i} be connected to ensure that it has a constant sign $\operatorname{sgn}_{\mathcal{O}_{i}} \varphi_{i}= \pm 1$ according to the orientatation \mathcal{O}_{i}.) Using the charts φ_{i} we construct a product chart

$$
\begin{array}{rlll}
\Phi=\prod_{i} \varphi_{i} \circ \pi_{i}: & \prod_{i} U_{i} & \rightarrow & \prod_{i} \mathbb{R}^{n_{i}} \\
x & \mapsto & \left(\varphi_{i}\left(\pi_{i}(x)\right)\right)_{i}
\end{array}
$$

of the product manifold $\prod_{i} M_{i}$. The charts $\Phi=\prod_{i} \varphi_{i} \circ \pi_{i}$ of this kind form an atlas \mathcal{A} of the manifold $\prod_{i} M_{i}$. Let us define the sign of a chart $\Phi=\prod_{i} \varphi_{i} \circ \pi_{i}$ as above as

$$
s(\Phi):=\prod_{i} \operatorname{sgn}_{\mathcal{O}_{i}} \varphi_{i}
$$

Let us show that these function $s: \mathcal{A} \rightarrow\{ \pm 1\}$ is an orientation sign function. Suppose we have a second chart $\Psi=\prod_{i} \psi_{i} \circ \pi_{i}$, where each $\left(V_{i}, \psi_{i}\right)$ is a chart of M_{i}. Then the differential of the transition map $\Psi \circ \Phi^{-1}$ at any point $\widetilde{P}=\prod_{i} \varphi_{i}\left(p_{i}\right)$, where $p_{i} \in U_{i} \cap V_{i}$, is represented by a diagonal block matrix

$$
\begin{aligned}
{\left[\mathrm{D}_{P}\left(\Phi \circ \Phi^{-1}\right)\right] } & =\operatorname{diag}\left[\mathrm{D}_{\varphi\left(p_{i}\right)}\left(\psi_{i} \circ \varphi_{i}^{-1}\right)\right]_{i} \\
& =\left(\begin{array}{ccc}
{\left[\mathrm{D}_{\varphi\left(p_{0}\right)}\left(\psi_{0} \circ \varphi_{0}^{-1}\right)\right]} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & {\left[\mathrm{D}_{\varphi\left(p_{k-1}\right)}\left(\psi_{k-1} \circ \varphi_{k-1}^{-1}\right)\right]}
\end{array}\right) .
\end{aligned}
$$

The determinant of this matrix is

$$
\operatorname{det}\left[\mathrm{D}_{P}\left(\Phi \circ \Phi^{-1}\right)\right]=\prod_{i} \operatorname{det}\left[\mathrm{D}_{\varphi\left(p_{i}\right)}\left(\psi_{i} \circ \varphi_{i}^{-1}\right)\right]
$$

and the sign of this determinant is

$$
\begin{aligned}
\operatorname{sgn} \operatorname{det}\left[\mathrm{D}_{P}\left(\Phi \circ \Phi^{-1}\right)\right]=\prod_{i} \operatorname{sgn} \operatorname{det}\left[\mathrm{D}_{\varphi\left(p_{i}\right)}\left(\psi_{i} \circ \varphi_{i}^{-1}\right)\right] & =\prod_{i} \operatorname{sgn} \psi_{i} \cdot \operatorname{sgn} \varphi_{i} \\
& =s(\Phi) \cdot s(\Psi) .
\end{aligned}
$$

(Here we used the fact that $\operatorname{sgn} \operatorname{det}\left[\mathrm{D}_{\varphi\left(p_{i}\right)}\left(\psi_{i} \circ \varphi_{i}^{-1}\right)\right]=\operatorname{sgn}_{\mathcal{O}_{i}} \psi_{i} \cdot \operatorname{sgn}_{\mathcal{O}_{i}} \varphi_{i}$.) Thus there is an orientation, denoted $\prod_{i} \mathcal{O}_{i}$, on the product manifold $\prod_{i} M_{i}$ such that $\operatorname{sgn}_{\Pi_{i} \mathcal{O}_{i}}(\Phi)=s(\Phi)$ for each connected chart $\Phi=\prod_{i} \varphi_{i} \circ \pi_{i}$ as constructed above.

Exercise 12.3. Let M be a differentiable n-manifold. Show that the $\operatorname{sign} \operatorname{sgn} \omega$ of a nonvanishing n-form on M, defined by

$$
\left.(\operatorname{sgn} \omega)\right|_{p}\left(X_{0}, \ldots, X_{n-1}\right):=\operatorname{sgn}\left(\left.\omega\right|_{p}\left(X_{0}, \ldots, X_{n-1}\right)\right)
$$

for $p \in M$ and $X_{0}, \ldots, X_{n-1} \in \mathrm{~T}_{p} M$, is an orientation on M.
Solution. First part: Let us check that for each point $p \in M$, the function $\mathcal{O}_{p}=$ $\operatorname{sgn} \circ \omega_{p}$ that sends a base $B=\left(B_{i}\right)_{0 \leq i<n}$ of $\mathrm{T}_{p} M$ to the number $\operatorname{sgn}\left(\left.\omega\right|_{p}\left(B_{0}, \ldots, B_{n-1}\right)\right)=$ ± 1 is an orientation on $\mathrm{T}_{p} M$. We have to show that

$$
\mathcal{O}_{p}(B C)=\mathcal{O}_{p}(B) \cdot \operatorname{sgn} \operatorname{det} C
$$

for any base B and any invertible matrix $C \in \mathbb{R}^{n \times n}$. For this it suffices to show that

$$
\omega_{p}(B C)=\omega_{p}(B) \cdot \operatorname{det} C
$$

for any base B and any invertible matrix $C \in \mathbb{R}^{n \times n}$. Since any invertible matrix C can be decomposed as a product of elementary matrices (such as $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$, $\left.\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & \lambda \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1\end{array}\right)\right)$, it is sufficient to prove that $\omega_{p}(B C)=\omega_{p}(B) \cdot \operatorname{det} C$ when C is an elementary matrix. And this, in turn, folows from the fact that ω_{p} is multilinear and alternating:

- If C is a transposition matrix (which coincides with the identity matrix except at four coefficients $T_{i, i}=T_{j, j}=0, T_{i, j}=T_{j, i}=1$, then $\omega_{p}(B C)=-\omega_{p}(B)$ since ω_{p} is skew-symmetric. On the other hand we have $\operatorname{det} C=-1$, thus the equation $\omega_{p}(B C)=\omega_{p}(B) \cdot \operatorname{det} C$ holds.
- If $C=I+\lambda E_{j, i}$, with $i \neq j$, then

$$
\omega_{p}(B C)=\omega_{p}\left(B_{0}, \ldots, B_{i}+\lambda B_{j}, \ldots, B_{n-1}\right)=\omega_{p}(B)
$$

since ω_{p} is multilinear and alternating. Since on the other hand we have $\operatorname{det} C=1$, the equation $\omega_{p}(B C)=\omega_{p}(B) \cdot \operatorname{det} C$ holds.

- If C is a diagonal matrix where $C_{i, i}=\lambda \in \mathbb{R}$ and $C_{j, j}=1$ for $j \neq i$, then

$$
\omega_{p}(B C)=\omega_{p}\left(B_{0}, \ldots, \lambda B_{i}, \ldots, B_{n-1}\right)=\lambda \omega_{p}\left(B_{0}, \ldots, B_{n-1}\right)
$$

by linearity of ω_{p}. On the other hand we have $\operatorname{det} C=\lambda$, thus again the equation $\omega_{p}(B C)=\omega_{p}(B) \cdot \operatorname{det} C$ holds.
Second part: Let us show that the orientation field \mathcal{O} is continuous. We take a connected chart (U, φ) and write $\left.\omega\right|_{U}=h \mathrm{~d} \varphi^{0} \wedge \cdots \wedge \mathrm{~d} \varphi^{n-1}$, where $h: U \rightarrow \mathbb{R}$ is a continuous function. Note that h does not vanish, therefore it has constant sign. Therefore the map

$$
p \in U \mapsto \mathcal{O}_{p}\left(\left.\frac{\partial}{\partial \varphi^{0}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial \varphi^{n-1}}\right|_{p}\right)=\operatorname{sgn} \omega_{p}\left(\left.\frac{\partial}{\partial \varphi^{0}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial \varphi^{n-1}}\right|_{p}\right)=\operatorname{sgn} h(p)
$$

is constant on U. This shows that the orientation \mathcal{O} is continuous on U.
Exercise 12.4. Show that the projective plane \mathbb{P}^{2} is not orientable.
Solution. Recall that the projective plane is $\mathbb{P}^{2}:=\mathbb{R}^{3} \backslash\{0\} / \sim$, where $x \sim y$ iff $x=\lambda y$ for $\lambda \in \mathbb{R} \backslash\{0\}$. Assume, for a contradiction, that \mathbb{P}^{2} is orientable.

We will use the charts $(U, \varphi),(V, \psi)$, where

$$
\begin{aligned}
U & =\left\{[x, y, z] \in \mathbb{P}^{2}: z \neq 0,\right. & \varphi([x, y, z])=\left(\frac{x}{z}, \frac{y}{z}\right) \\
V & =\left\{[x, y, z] \in \mathbb{P}^{2}: x \neq 0,\right. & \psi([x, y, z])=\left(\frac{y}{x}, \frac{z}{x}\right) .
\end{aligned}
$$

These two charts do not cover the manifold \mathbb{P}^{2}, but they are enough for our purpose. Since these charts are connected, to prove that \mathbb{P}^{2} is not orientable it suffices to show that the determinant of the differential of transition map $\varphi \circ \psi^{-1}$ does not have constant sign.

Let us compute this determinant. Since $\psi^{-1}(y, z)=[1, y, z]$, the transition map is

$$
\varphi \circ \psi^{-1}:(y, z) \mapsto[1, y, z] \mapsto\left(\frac{1}{z}, \frac{y}{z}\right)
$$

defined for $(y, z) \in \mathbb{R}^{2}$ such that $z \neq 0$. The differential of this transition map is represented by the matrix

$$
\left[\mathrm{D}_{(y, z)}\left(\varphi \circ \psi^{-1}\right)\right]=\left(\begin{array}{cc}
0 & -\frac{1}{z^{2}} \\
\frac{1}{z} & -\frac{y}{z^{2}}
\end{array}\right)
$$

which has determinant

$$
\operatorname{det}\left[\mathrm{D}_{(y, z)}\left(\varphi \circ \psi^{-1}\right)\right]=\operatorname{det}\left(\begin{array}{cc}
0 & -\frac{1}{z^{2}} \\
\frac{1}{z} & -\frac{y}{z^{2}}
\end{array}\right)=\frac{1}{z^{3}} .
$$

This value does not have constant sign, as we had to show.

Exercise 12.5. Show that the Möbius band is not orientable.
Solution. The Möbius band M is the quotient space of \mathbb{R}^{2} by the equivalence relation

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow x^{\prime}-x=n \in \mathbb{Z} \text { and } y^{\prime}=(-1)^{n} y
$$

Let us show that it is not orientable. Suppose, for a contradiction, that M has an orientation \mathcal{O}. Let $\pi: \mathbb{R}^{2} \rightarrow M$ be the quotient map. We take an atlas consisting of two parametrizations $\varphi=\left.\pi\right|_{U}$ and $\psi=\left.\pi\right|_{V}$, where $U=(0,1) \times \mathbb{R}$ and $V=\left(\frac{1}{2}, \frac{3}{2}\right) \times \mathbb{R}$. Since the two sets U, V are connected, each of the two parametrizations φ, ψ has a constant sign w.r.t. the orientation \mathcal{O}, therefore the transition map $\psi^{-1} \circ \varphi$ must have a constant sign as well. However, the transition map is

$$
\psi^{-1} \circ \varphi(x, y)= \begin{cases}(x, y) & \text { if } x \in\left(\frac{1}{2}, 1\right) \\ (x,-y) & \text { if } x \in\left(0, \frac{1}{2}\right)\end{cases}
$$

and the sign

$$
\operatorname{sgn} \operatorname{det} \mathrm{D}_{(x, y)}\left(\psi^{-1} \circ \varphi\right)= \begin{cases}1 & \text { if } x \in\left(\frac{1}{2}, 1\right) \\ -1 & \text { if } x \in\left(0, \frac{1}{2}\right)\end{cases}
$$

is not constant.

1. Manifolds with boundary

Exercise 12.6. Let M be an n-dimensional \mathcal{C}^{r} manifold with boundary.
(a) Show that its interior Int M and its boundary ∂M are disjoint subsets.

Solution. Suppose there is point p contained on both ∂M and Int M, therefore there are two charts $\varphi: U \rightarrow \widetilde{U}$ and $\psi: V \rightarrow \widetilde{V}$, where $U, V \subseteq M$ and $\widetilde{U}, \widetilde{V} \subseteq \mathbb{H}^{n}$ are open sets, such that $\varphi(p) \in \operatorname{Int} \mathbb{H}^{n}$ and $\psi(p) \in \partial \mathbb{H}^{n}$.

We may assume (by shrinking \widetilde{U} to $\widetilde{U} \cup \operatorname{Int} \mathbb{H}^{n}$ and shhrinking U accordingly to $\varphi^{-1}\left(\widetilde{U} \cup \operatorname{Int} \mathbb{H}^{n}\right)$ and restricting φ) that the set \widetilde{U} is contained in $\operatorname{Int} \mathbb{H}^{n}$ and therefore it is an open subset of \mathbb{R}^{n}. Also, we may assume that $U=V$ (again, by shrinking U and V to $U \cap V$, and shrinking \widetilde{U} and \widetilde{V} accordingly to $\varphi(U \cap V$ and $\psi(U \cap V)$ resp. $)$. Therefore the transition map $\psi \circ \varphi^{-1}: \widetilde{U} \rightarrow \widetilde{V}$ is a diffeomorphism between open subsets of \mathbb{R}^{n} and \mathbb{H}^{n} respectively. In particular, the transition map $\psi \circ \varphi^{-1}$ is \mathcal{C}^{1} and has injective differential at every point. This implies, by the inverse function theorem, that its image \widetilde{V} is an open
subset of \mathbb{R}^{n}. But since $\widetilde{V} \subseteq \mathbb{H}^{n}$, this means that $\tilde{V} \subseteq \operatorname{Int} \mathbb{H}^{n}$. This contradicts the fact that $\psi(p) \in \partial \mathbb{H}^{n}$.

Let us show that Int M is an open subset of M. Since

$$
\operatorname{Int}(M)=\bigcup_{(U, \varphi) \mathrm{chart}} U \cap \operatorname{Int} M
$$

thus it suffices to show that $U \cap \operatorname{Int} M$ is open in U for all charts (U, φ). And indeed, we have $U \cap \operatorname{Int} M=\varphi^{-1}\left(\operatorname{Int} \mathbb{H}^{n}\right)$, and this is an open subset of U since φ is continuous and Int \mathbb{H}^{n} is an open subset of \mathbb{H}^{n}.
(b) Show that ∂M, endowed with the subspace topology, can be given the structure of an n-1-dimensional \mathcal{C}^{r} manifold (without boundary) such that the inclusion map into M is \mathcal{C}^{r}.
Solution. This is done in the lectures.
Exercise 12.7. Prove that a continuous k-form is determined by the value of its integrals (Proposition 7.3.12). Hint: Use a chart to move the problem to \mathbb{R}^{n}, then integrate on small pieces of coordinate planes.

Solution. Suppose that our manifold is an open set $U \subseteq \mathbb{R}^{n}$ (considered as a \mathcal{C}^{1} manifold) and $\omega \in \Omega^{k}(U)$ is a continuous k-form. We write $\omega=\sum_{I \in \underline{n}^{k}} \omega_{I} \mathrm{~d} x^{I}$. Let $p \in U$ and $I=\left(i_{0}, \ldots, i_{k-1}\right) \in \underline{n}^{k}$ an increasing k-index. We want to show that $\omega_{I}(p)$ is determined by values of k-dimensional integrals of ω.

Let $\iota=\iota_{p, I}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}: y \mapsto x$ where

$$
x^{i}= \begin{cases}y^{s} & \text { if } i=i_{s} \text { for some } s \in \underline{k} \\ p^{i} & \text { otherwise }\end{cases}
$$

We restrict ι to the open set $V=\iota^{-1} U$ and note that the point $\widetilde{p}=\iota^{-1}(p)=$ $\left(p^{i_{s}}\right)_{s \in \underline{k}} \subseteq \mathbb{R}^{k}$ is contained in V.

The pullback by ι of ω is the continuous k-form $\iota^{*} \omega=h \mathrm{~d} y^{0} \wedge \cdots \wedge \mathrm{~d} y^{k-1} \in \Omega^{k}(V)$, where $h=\omega_{I} \circ \iota \in \mathcal{C}(V, \mathbb{R})$.

Denote $D_{\widetilde{p}, \varepsilon} \subseteq \mathbb{R}^{k}$ be the closed ball of center \widetilde{p} and radius $\varepsilon>0$ in \mathbb{R}^{k}, and let $\left|D_{\widetilde{p}, \varepsilon}\right|$ be the volume of this ball. We take ε small enough so that $D_{\widetilde{p}, \varepsilon} \subseteq V$. Then

$$
\frac{1}{\left|D_{\widetilde{p}, \varepsilon}\right|} \int_{D_{\widetilde{p}, \varepsilon}} \iota^{*} \omega=\frac{1}{\left|D_{\widetilde{p}, \varepsilon}\right|} \int_{D_{\widetilde{p}, \varepsilon}} h=\left(\text { average value of } h \text { on } D_{\widetilde{p}, \varepsilon}\right) \xrightarrow{\varepsilon \rightarrow 0} h(\widetilde{p})=\omega_{I}(p)
$$

This means that we can find out the value of $\omega_{I}(p)$ if we know the value of the integral $\int_{D_{\widetilde{p}, \varepsilon}} \iota_{p, I}^{*} \omega$ for every $\varepsilon>0$. Doing this for each increasing k-index $I \in \underline{n}^{k}$, we find out the value of $\left.\omega\right|_{p}$ at the point $p \in U$. Thus any continuous k-form $\omega \in \Omega^{k}(U)$ is determined by the value of its integrals of the form $\int_{D_{\widetilde{p}, \varepsilon}} \iota_{p, \varepsilon}^{*} \omega$.

If M is a general \mathcal{C}^{1} manifold and $\omega \in \Omega^{k}(M)$ is a continuous k-form, we use a local parametrization $\varphi: U \rightarrow M$ to get a k-form $\varphi^{*} \omega \in \Omega^{k}(U)$, and then as explained above we can determine this k-form if we know the value of the integrals of the kind

$$
\int_{D_{\widetilde{p}, \varepsilon}} \iota_{p, I}^{*}\left(\varphi^{*} \omega\right)=\int_{D_{\widetilde{p}, \varepsilon}}\left(\varphi \circ \iota_{p, I}\right)^{*} \omega
$$

But knowing $\varphi^{*} \omega$ is equivalent to knowing $\left.\omega\right|_{\varphi(U)}$, thus using different parametrizations (U, φ) we can know ω at all points of M.

