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Exercise 13.1 (Properties of the integral). Let M be an oriented differentiable n-
manifold and let w, n be two continuous, compactly supported n-forms on M. Prove
the following:

(a) Linearity: If a,b € R, then

/M(aw+bn) :a/Mw+b/M77

Solution. First case: The manifold M is an open subset U of R", with the
standard orientation. Then we may write

w=hdz® A---Adz"!
n=gda®A---Adaz"!
and we have aw +bn = (ah+bg)dz® A --- Ada""!, therefore

/M(aw+bn):/(ah+bg —a/h+b/ g:a/ w+b/

where the integrals over U are Riemann integrals.

Second case: M is a general manifold, but the supports of w and n are
contained in the image ¢(U) of a single parametrization ¢ : U — M that has
constant sign sgn ¢ = +1. Then supp(aw + bn) C suppw Usuppn C ¢(U),
and we have

/(aw+bn)zsgn¢-/w*(aw+bn)
M U
—sgn<p~/U(a<p*w+b<p*77)

:asgngo-/go*w—i—bsgngp-/cp*n:a/ w—i—b/ n
U U M M

General case: We use a family of local parametrizations (U;, ;) whose im-
ages ©;(U;) cover supp w and supp 7, and a partition of unity (x;); subordinate
to the open cover (U;); of the set | J; vi(U;). Then by definition of fM we have

/M(aw+b'n) = Z;/sz-(aw +bn)
= Z/M(aXiw+in77)-

Since the forms x; w and x; 1 have their support contained in ¢;(U;), by the
previous case the last integral is equal to

" (e fere )

=azi:/Mxiw+bzi:/Mxm
:a/ w—l—b/n
M
]

(b) Positivity: If sgn(wl|,) coincides with the orientation of M at every point
p € M where w|, # 0, then [ u @ = 0, and the inequality is strict unless w is

identically zero.
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Solution. First case: Let M be an open set U C R", with the standard
orientation. In this case we can write w = hda® A --- A dz""! for some
continuous function h : U — R, and we have sgn(w,) = sgn h(p) for any point
p € U, because dz® A---Adz™ ! is a positive n-form. Therefore the condition
that sgn(w,) coincides with the orientation of M for all points p € U where
wp # 0 is equivalent to the condition that h(p) > 0 for all p € U.

Thus we have [;,w = [;;h >0, and the inequality is strict unless h = 0,
which means w = 0.

Second case: Suppose suppw C U for some local parametrization ¢ : U—
U that has constant sign sgn ¢ = £1. For a point p = ¢(p) where wj, # 0, we
have

sgn((¢"w)lp) = sgn e - sgn(wlp),
——
=11
which implies that sgn(¢*w)|, = sgn ¢. Therefore

/w:sgngo/~go*w20
M U

and the equality holds if and only if ¢*w =0, iff w = 0.

General case: We use a family of local parametrizations (U;, p;) whose
images ;(U;) cover suppw and suppn, and a partition of unity (x;); subor-
dinate to the open cover (U;); of the set |J, ¢;(U;). Since x; > 0, we have
sgn(x;w) > 0, and therefore [,,w = >, [, xiw > 0 with equality iff y;w =0
for all ¢, iff w = 0. O
Diffeomorphism invariance: If f : N — M is an diffeomorphism of constant
sign sgn(f) = £1 (i.e. f is either orientation preserving or orientation revers-

ing), then
[ fro=sar- [ w

Solution. Suppose supp(f*w) C <p(U ) for some local parametrization ¢ : U —
N. Then f o is a local parametrization of M such that suppw C f(¢(U)),
and we have

/Nf*w=/ﬁso*(f*w):/ﬁ(fow)*w=/MW-

In the general case, the result is deduced easily using partitions unity. O

Orientation reversal: If —M denotes M with the reversed orientation, then

[

Solution. Let O be the orientation of M, so that —O is the orientation of
—M. Here the most important case is when supp(w) C ¢(U) for some local
parametrization ¢ : U — M. In the formula

/ w = Sgnoso~/~s0*w,
M U

if we reverse the orientation of M, then the sign of ¢ is also reversed:

/ w:sgn_@cp-/~g0*w:—sgnow-[@*w:—/ w.
-M U U M

In the general case, the result is deduced easily using partitions unity. O

Exercise 13.2. Prove that a continuous k-form is determined by the value of its
integrals (Proposition 7.3.12). Hint: Use a chart to move the problem to R", then integrate

on small pieces of coordinate planes.
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Solution. Suppose that our manifold is an open set U C R"™ (considered as a C!
manifold) and w € QF(U) is a continuous k-form. We write w = Zlen}> wrdal. Let

p€Uand I = (ig,...,ip_1) € n* an increasing k-index. We want to show that wr(p)
is determined by values of k-dimensional integrals of w.

LetL:Lp,I:Rk%R”:nywhere

7

p

b y® if i = ig for some s € k
otherwise.

We restrict ¢ to the open set V = (~'U and note that the point p = ~!(p) =
(p*)ser € R¥ is contained in V.
The pullback by ¢ of w is the continuous k-form t*w = hdy® A--- AdyF~1 € QF(V),
where h = wy o1 € C(V,R).
Denote Dy, C R* be the closed ball of center p and radius e > 0 in R*, and let
|Dp.| be the volume of this ball. We take e small enough so that D5, C V. Then
* 1 e—0

1
Dol /o fFw= Dl ) h = (average value of h on Dj.) — h(p) = wr(p).
b, D,E b, D,e

This means that we can find out the value of w;(p) if we know the value of the integral
In- L, qw for every e > 0. Doing this for each increasing k-index I € ﬂk/(, we find
pe 5

out the value of wl, at the point p € U. Thus any continuous k-form w € QF(U) is
determined by the value of its integrals of the form |’ Do lpeW-
p,e 7

If M is a general C' manifold and w € Q¥(M) is a continuous k-form, we use a local
parametrization ¢ : U — M to get a k-form ¢*w € QF(U), and then as explained
above we can determine this k-form if we know the value of the integrals of the kind

[ ateor= [ o
D D

p,e
But knowing ¢*w is equivalent to knowing wl,(r), thus using different parametriza-
tions (U, ¢) we can know w at all points of M. O

D,e

Exercise 13.3.* Let f : M — N be a smooth map between smooth manifolds. Then
for all w € QF(M) we have

fH(dw) = d(fw).
Exercise 13.4.* Let (z,y, z) be the standard coordinates on R? and let (v, w) be the
standard coordinates on R2. Let ¢ : R® — R? be defined as ¢(x,y,2) = (x + 2, 2y).

Let « = e¥dv 4+ vdw and 8 = v dv A dw be 2-forms on R?. Compute the following
differential forms:

alB, ¢ (), ¢°(B), ¢(a)Ad™(B).

Solution. (a) Since Q23(R?) is just the zero form, whatever o and 3 are, a A3 = 0
(b) We can either use the definition of ¢*(«) to compute the components of this
1-form, or the property that, in local coordinates,

¢*(ardy’) = (aro d)d(y’ o ¢)
If we want to use the definition, consider that a basis for Q'(R3) is given

by dz,dy,dz. Following a standard convention, we denote for convenience
8% = 0;. Thus we have

$*(0)(0) = (dp(Da)) = Dy + yO) = € +yv = € + (3 + )y
0*(0)(@,) = a(dp(d,) = a(@dy) = av = (z+ 2o
$'(0)(0) = a(dg(d,) = a(d,) = ¥ = e

Thus we obtain

pra=e"+ (x4 z)yder + (x + z)xdy + ¥ dz
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(c) To compute ¢*f we use the other (perhaps more direct) method. It uses the
following important property of the pull-back:

¢*(f(z)dat Ao Ada®) = (fog)d(a' o) A--- Ad(a* 0 )
Thus we have
¢*(B) = ¢"(v dvAdw)
v(¢) d(v(@)) A d(w(e))

= (z+2)(dz+dz) A (ydo + xdy)
(x4 2)(xdx ANdy —ydx Adz — xdy A dz)

(d) The property ¢*(a) A ¢*(8) = ¢*(a A B) implies that this is a null form.

O
Exercise 13.5.* Compute the exterior derivative of the following forms:
dy—yd
(a) on B2\ {0} 0 = dy-vde.
Solution. Applying the definition of exterior derivative yields
2
L -y + 4 —y?
df =d | —— |Ady+d | —— Adxzidx/\d 7d Adx =0
<w2+y2> ’ <x2+y2> (% +y%) a2 Y
O

(b) on R3, ¢ = cos(x) dy A dz.
Solution. dp = d(cos(x)) Ady Adz = —sin(z) dz A dy A dz. O
(c) on R® w = Adz + Bdy + Cdz.

Solution. Here consider A, B,C as smooth functions on R3, by definition we
have

dw = dAAdz+dBAdy+dCAdz

— <gAd +gAd +?)Adz>/\dx+<gBd +gBd +gd2>/\dy
+ <gcdx ?dy—i—?dz)/\dz
= —g—Ad A dy +?)—Adz/\dx+?3—Bd /\dy—i;de/\d —gﬁd /\dx—i—gﬁ

Remark: Notice the resemblance of dw with the curl of a vector field in
R3. Recall that if F = (A4, B,C) is a vector field in R? then

curlF' = (Cy — B,, A, — Cy, B, — Ay)

One can identify 2-forms with vector fields, by sending adx Ady +bdy Adz +
cdz A dzx to the vector field (b, c,a). O

Exercise 13.6.* Deduce the following classical theorems from Stokes’ theorem.

(a) Green’s theorem. Let D C R? be a smooth 2-dimensional compact em-
bedded submanifold with boundary in R?. Then for any differentiable 1-form
w = Pdz + @Qdy defined on an open neighborhood of D we have

/<8Q—8P>dmdy—/ Pdz+ Qdy.
p \0z Oy L o

dy Adz
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Solution. The differential of w is

dw=dP Adz+dQ Ady

= (8de+8de) Adz + <8de+any> A dy

Ox y Ox oy
0Q 0P
=—=———)dzAdy.
( dr Oy > e
Hence this is a particular case of the Stokes’ theorem. O

Divergence theorem. Let A C R? be a 3-dimensional compact embedded
submanifold with boundary in R3. Then for any smooth vector field F': A —
R? we have

/divF dV = F-d
A A

wher dV := dx A dy A dz is the standard 3-form on R? and on the right hand
side we have the formal inner product with dS = (dy A dz,dz A dz, dz A dy).
Solution. The expression F - dS is to be understood as in the lecture notes

as the 2-form w € Q?(R3) given as the formal inner product between F' and
dS = (dy Adz,dz A dz,dz A dy), ie.

w=F-dS=F,dyAndz+ Fydz ANdx + F, dz A dy.

A direct computation then shows that

oF, O0F, OF, T
O 3y + 8Z)daz/\dy/\dz—le(F)dV.

Hence by Stokes Theorem:

/div(F)dV:/dw:/ w:/ F-ds
A A 0A 0A

where of course all the forms in the integrals are understood to be restricted
to A resp. 0A. O

o



