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Exercise 13.1 (Properties of the integral). Let M be an oriented differentiable n-

manifold and let ω, η be two continuous, compactly supported n-forms on M . Prove

the following:

(a) Linearity: If a, b ∈ R, then∫
M

(aω + b η) = a

∫
M
ω + b

∫
M
η.

Solution. First case: The manifold M is an open subset U of Rn, with the

standard orientation. Then we may write

ω = hdx0 ∧ · · · ∧ dxn−1

η = g dx0 ∧ · · · ∧ dxn−1

and we have aω + b η = (a h+ b g) dx0 ∧ · · · ∧ dxn−1, therefore∫
M

(aω + b η) =

∫
U

(a h+ b g) = a

∫
U
h+ b

∫
M
g = a

∫
M
ω + b

∫
M
η

where the integrals over U are Riemann integrals.

Second case: M is a general manifold, but the supports of ω and η are

contained in the image ϕ(U) of a single parametrization ϕ : U →M that has

constant sign sgnϕ = ±1. Then supp(aω + b η) ⊆ suppω ∪ supp η ⊆ ϕ(U),

and we have∫
M

(aω + b η) = sgnϕ ·
∫
U
ϕ∗(aω + b η)

= sgnϕ ·
∫
U

(aϕ∗ω + b ϕ∗η)

= a sgnϕ ·
∫
U
ϕ∗ω + b sgnϕ ·

∫
U
ϕ∗η = a

∫
M
ω + b

∫
M
η

General case: We use a family of local parametrizations (Ui, ϕi) whose im-

ages ϕi(Ui) cover suppω and supp η, and a partition of unity (χi)i subordinate

to the open cover (Ui)i of the set
⋃

i ϕi(Ui). Then by definition of
∫
M we have∫

M
(aω + b η) =

∑
i

∫
M
χi(aω + b η)

=
∑
i

∫
M

(aχi ω + b χi η).

Since the forms χi ω and χi η have their support contained in ϕi(Ui), by the

previous case the last integral is equal to

=
∑
i

(
a

∫
M
χi ω + b

∫
M
χi η

)
= a

∑
i

∫
M
χi ω + b

∑
i

∫
M
χi η

= a

∫
M
ω + b

∫
η.

�

(b) Positivity: If sgn(ω|p) coincides with the orientation of M at every point

p ∈ M where ω|p 6= 0, then
∫
M ω ≥ 0, and the inequality is strict unless ω is

identically zero.
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Solution. First case: Let M be an open set U ⊆ Rn, with the standard

orientation. In this case we can write ω = hdx0 ∧ · · · ∧ dxn−1 for some

continuous function h : U → R, and we have sgn(ωp) = sgnh(p) for any point

p ∈ U , because dx0∧· · ·∧dxn−1 is a positive n-form. Therefore the condition

that sgn(ωp) coincides with the orientation of M for all points p ∈ U where

ωp 6= 0 is equivalent to the condition that h(p) ≥ 0 for all p ∈ U .

Thus we have
∫
M ω =

∫
U h ≥ 0, and the inequality is strict unless h ≡ 0,

which means ω ≡ 0.

Second case: Suppose suppω ⊆ U for some local parametrization ϕ : Ũ →
U that has constant sign sgnϕ = ±1. For a point p = ϕ(p̃) where ωp 6= 0, we

have

sgn((ϕ∗ω)|p) = sgnϕ · sgn(ω|p)︸ ︷︷ ︸
=+1

,

which implies that sgn(ϕ∗ω)|p = sgnϕ. Therefore∫
M
ω = sgnϕ

∫
Ũ
ϕ∗ω ≥ 0

and the equality holds if and only if ϕ∗ω ≡ 0, iff ω ≡ 0.

General case: We use a family of local parametrizations (Ui, ϕi) whose

images ϕi(Ui) cover suppω and supp η, and a partition of unity (χi)i subor-

dinate to the open cover (Ui)i of the set
⋃

i ϕi(Ui). Since χi ≥ 0, we have

sgn(χiω) ≥ 0, and therefore
∫
M ω =

∑
i

∫
M χiω ≥ 0 with equality iff χiω = 0

for all i, iff ω ≡ 0. �

(c) Diffeomorphism invariance: If f : N → M is an diffeomorphism of constant

sign sgn(f) = ±1 (i.e. f is either orientation preserving or orientation revers-

ing), then ∫
N
f∗ω = sgn f ·

∫
M
ω.

Solution. Suppose supp(f∗ω) ⊆ ϕ(Ũ) for some local parametrization ϕ : Ũ →
N . Then f ◦ ϕ is a local parametrization of M such that suppω ⊆ f(ϕ(U)),

and we have∫
N
f∗ω =

∫
Ũ
ϕ∗(f∗ω) =

∫
Ũ

(f ◦ ϕ)∗ω =

∫
M
ω.

In the general case, the result is deduced easily using partitions unity. �

(d) Orientation reversal: If −M denotes M with the reversed orientation, then∫
−M

ω = −
∫
M
ω.

Solution. Let O be the orientation of M , so that −O is the orientation of

−M . Here the most important case is when supp(ω) ⊆ ϕ(Ũ) for some local

parametrization ϕ : Ũ →M . In the formula∫
M
ω := sgnO ϕ ·

∫
Ũ
ϕ∗ω,

if we reverse the orientation of M , then the sign of ϕ is also reversed:∫
−M

ω = sgn−O ϕ ·
∫
Ũ
ϕ∗ω = − sgnO ϕ ·

∫
Ũ
ϕ∗ω = −

∫
M
ω.

In the general case, the result is deduced easily using partitions unity. �

Exercise 13.2. Prove that a continuous k-form is determined by the value of its

integrals (Proposition 7.3.12). Hint: Use a chart to move the problem to Rn, then integrate

on small pieces of coordinate planes.
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Solution. Suppose that our manifold is an open set U ⊆ Rn (considered as a C1
manifold) and ω ∈ Ωk(U) is a continuous k-form. We write ω =

∑
I∈nk

↗
ωI dxI . Let

p ∈ U and I = (i0, . . . , ik−1) ∈ nk an increasing k-index. We want to show that ωI(p)

is determined by values of k-dimensional integrals of ω.

Let ι = ιp,I : Rk → Rn : y 7→ x where

xi =

{
ys if i = is for some s ∈ k
pi otherwise.

We restrict ι to the open set V = ι−1U and note that the point p̃ = ι−1(p) =

(pis)s∈k ⊆ Rk is contained in V .

The pullback by ι of ω is the continuous k-form ι∗ω = hdy0∧ · · ·∧dyk−1 ∈ Ωk(V ),

where h = ωI ◦ ι ∈ C(V,R).

Denote Dp̃,ε ⊆ Rk be the closed ball of center p̃ and radius ε > 0 in Rk, and let

|Dp̃,ε| be the volume of this ball. We take ε small enough so that Dp̃,ε ⊆ V . Then

1

|Dp̃,ε|

∫
Dp̃,ε

ι∗ω =
1

|Dp̃,ε|

∫
Dp̃,ε

h = (average value of h on Dp̃,ε)
ε→0−→ h(p̃) = ωI(p).

This means that we can find out the value of ωI(p) if we know the value of the integral∫
Dp̃,ε

ι∗p,Iω for every ε > 0. Doing this for each increasing k-index I ∈ nk↗, we find

out the value of ω|p at the point p ∈ U . Thus any continuous k-form ω ∈ Ωk(U) is

determined by the value of its integrals of the form
∫
Dp̃,ε

ι∗p,εω.

If M is a general C1 manifold and ω ∈ Ωk(M) is a continuous k-form, we use a local

parametrization ϕ : U → M to get a k-form ϕ∗ω ∈ Ωk(U), and then as explained

above we can determine this k-form if we know the value of the integrals of the kind∫
Dp̃,ε

ι∗p,I(ϕ∗ω) =

∫
Dp̃,ε

(ϕ ◦ ιp,I)∗ω

But knowing ϕ∗ω is equivalent to knowing ω|ϕ(U), thus using different parametriza-

tions (U,ϕ) we can know ω at all points of M . �

Exercise 13.3.* Let f : M → N be a smooth map between smooth manifolds. Then

for all ω ∈ Ωk(M) we have

f∗(dω) = d(f∗ω).

Exercise 13.4.* Let (x, y, z) be the standard coordinates on R3 and let (v, w) be the

standard coordinates on R2. Let φ : R3 → R2 be defined as φ(x, y, z) = (x + z, xy).

Let α = ew dv + v dw and β = v dv ∧ dw be 2-forms on R2. Compute the following

differential forms:

α ∧ β, φ∗(α), φ∗(β), φ∗(α) ∧ φ∗(β).

Solution. (a) Since Ω3(R2) is just the zero form, whatever α and β are, α∧β = 0

(b) We can either use the definition of φ∗(α) to compute the components of this

1-form, or the property that, in local coordinates,

φ∗(αI dyI) = (αI ◦ φ) d(yI ◦ φ)

If we want to use the definition, consider that a basis for Ω1(R3) is given

by dx,dy,dz. Following a standard convention, we denote for convenience
∂
∂x = ∂x. Thus we have

φ∗(α)(∂x) = α(dφ(∂x)) = α(∂v + y∂w) = ew + yv = exy + (x+ z)y

φ∗(α)(∂y) = α(dφ(∂y)) = α(x∂w) = xv = (x+ z)x

φ∗(α)(∂z) = α(dφ(∂z)) = α(∂v) = ew = exy

Thus we obtain

φ∗α = exy + (x+ z)y dx+ (x+ z)x dy + exy dz
3
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(c) To compute φ∗β we use the other (perhaps more direct) method. It uses the

following important property of the pull-back:

φ∗(f(x) dx1 ∧ · · · ∧ dxk) = (f ◦ φ) d(x1 ◦ φ) ∧ · · · ∧ d(xk ◦ φ)

Thus we have

φ∗(β) = φ∗(v dv ∧ dw)

= v(φ) d(v(φ)) ∧ d(w(φ))

= (x+ z)(dx+ dz) ∧ (y dx+ x dy)

= (x+ z)(x dx ∧ dy − y dx ∧ dz − x dy ∧ dz)

(d) The property φ∗(α) ∧ φ∗(β) = φ∗(α ∧ β) implies that this is a null form.

�

Exercise 13.5.* Compute the exterior derivative of the following forms:

(a) on R2 \ {0} θ = xdy−y dx
x2+y2

.

Solution. Applying the definition of exterior derivative yields

dθ = d

(
x

x2 + y2

)
∧dy+d

(
−y

x2 + y2

)
∧dx =

−x2 + y2

(x2 + y2)2
dx∧dy− x2 − y2

(x2 + y2)2
dy∧dx = 0

�

(b) on R3, ϕ = cos(x) dy ∧ dz.

Solution. dϕ = d(cos(x)) ∧ dy ∧ dz = − sin(x) dx ∧ dy ∧ dz. �

(c) on R3 ω = Adx+B dy + C dz.

Solution. Here consider A,B,C as smooth functions on R3, by definition we

have

dω = dA ∧ dx+ dB ∧ dy + dC ∧ dz

=

(
∂A

∂x
dx+

∂A

∂y
dy +

∂A

∂z
dz

)
∧ dx+

(
∂B

∂x
dx+

∂B

∂y
dy +

∂B

∂z
dz

)
∧ dy

+

(
∂C

∂x
dx+

∂C

∂y
dy +

∂C

∂z
dz

)
∧ dz

= −∂A
∂y

dx ∧ dy +
∂A

∂z
dz ∧ dx+

∂B

∂x
dx ∧ dy − ∂B

∂z
dy ∧ dz − ∂C

∂x
dz ∧ dx+

∂C

∂y
dy ∧ dz

=

(
∂B

∂x
− ∂A

∂y

)
dx ∧ dy −

(
∂B

∂z
− ∂C

∂y

)
dy ∧ dz +

(
∂A

∂z
− ∂C

∂x

)
dz ∧ dx

Remark: Notice the resemblance of dω with the curl of a vector field in

R3. Recall that if F = (A,B,C) is a vector field in R3 then

curlF = (Cy −Bz, Az − Cx, Bx −Ay)

One can identify 2-forms with vector fields, by sending a dx∧dy+ bdy∧dz+

cdz ∧ dx to the vector field (b, c, a). �

Exercise 13.6.* Deduce the following classical theorems from Stokes’ theorem.

(a) Green’s theorem. Let D ⊆ R2 be a smooth 2-dimensional compact em-

bedded submanifold with boundary in R2. Then for any differentiable 1-form

ω = P dx+Qdy defined on an open neighborhood of D we have∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫
∂D

P dx+Qdy.
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Solution. The differential of ω is

dω = dP ∧ dx+ dQ ∧ dy

=

(
∂P

∂x
dx+

∂P

∂y
dy

)
∧ dx+

(
∂Q

∂x
dx+

∂Q

∂y
dy

)
∧ dy

=

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.

Hence this is a particular case of the Stokes’ theorem. �

(b) Divergence theorem. Let A ⊂ R3 be a 3-dimensional compact embedded

submanifold with boundary in R3. Then for any smooth vector field F : A→
R3 we have ∫

A
divF dV =

∫
∂A
F · d

wher dV := dx∧ dy ∧ dz is the standard 3-form on R3 and on the right hand

side we have the formal inner product with dS = (dy ∧ dz,dz ∧ dx,dx ∧ dy).

Solution. The expression F · dS is to be understood as in the lecture notes

as the 2-form ω ∈ Ω2(R3) given as the formal inner product between F and

dS = (dy ∧ dz,dz ∧ dx,dx ∧ dy), i.e.

ω = F · dS = Fx dy ∧ dz + Fy dz ∧ dx+ Fz dx ∧ dy.

A direct computation then shows that

dω =
(∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z

)
dx ∧ dy ∧ dz = div(F ) dV.

Hence by Stokes Theorem:∫
A

div(F ) dV =

∫
A

dω =

∫
∂A
ω =

∫
∂A
F · dS

where of course all the forms in the integrals are understood to be restricted

to A resp. ∂A. �
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