Exercise 13.1 (Properties of the integral). Let M be an oriented differentiable n manifold and let ω, η be two continuous, compactly supported n-forms on M. Prove the following:
(a) Linearity: If $a, b \in \mathbb{R}$, then

$$
\int_{M}(a \omega+b \eta)=a \int_{M} \omega+b \int_{M} \eta .
$$

Solution. First case: The manifold M is an open subset U of \mathbb{R}^{n}, with the standard orientation. Then we may write

$$
\begin{aligned}
\omega & =h \mathrm{~d} x^{0} \wedge \cdots \wedge \mathrm{~d} x^{n-1} \\
\eta & =g \mathrm{~d} x^{0} \wedge \cdots \wedge \mathrm{~d} x^{n-1}
\end{aligned}
$$

and we have $a \omega+b \eta=(a h+b g) \mathrm{d} x^{0} \wedge \cdots \wedge \mathrm{~d} x^{n-1}$, therefore

$$
\int_{M}(a \omega+b \eta)=\int_{U}(a h+b g)=a \int_{U} h+b \int_{M} g=a \int_{M} \omega+b \int_{M} \eta
$$

where the integrals over U are Riemann integrals.
Second case: M is a general manifold, but the supports of ω and η are contained in the image $\varphi(U)$ of a single parametrization $\varphi: U \rightarrow M$ that has constant $\operatorname{sign} \operatorname{sgn} \varphi= \pm 1$. Then $\operatorname{supp}(a \omega+b \eta) \subseteq \operatorname{supp} \omega \cup \operatorname{supp} \eta \subseteq \varphi(U)$, and we have

$$
\begin{aligned}
\int_{M}(a \omega+b \eta) & =\operatorname{sgn} \varphi \cdot \int_{U} \varphi^{*}(a \omega+b \eta) \\
& =\operatorname{sgn} \varphi \cdot \int_{U}\left(a \varphi^{*} \omega+b \varphi^{*} \eta\right) \\
& =a \operatorname{sgn} \varphi \cdot \int_{U} \varphi^{*} \omega+b \operatorname{sgn} \varphi \cdot \int_{U} \varphi^{*} \eta=a \int_{M} \omega+b \int_{M} \eta
\end{aligned}
$$

General case: We use a family of local parametrizations $\left(U_{i}, \varphi_{i}\right)$ whose images $\varphi_{i}\left(U_{i}\right)$ cover supp ω and supp η, and a partition of unity $\left(\chi_{i}\right)_{i}$ subordinate to the open cover $\left(U_{i}\right)_{i}$ of the set $\bigcup_{i} \varphi_{i}\left(U_{i}\right)$. Then by definition of \int_{M} we have

$$
\begin{aligned}
\int_{M}(a \omega+b \eta) & =\sum_{i} \int_{M} \chi_{i}(a \omega+b \eta) \\
& =\sum_{i} \int_{M}\left(a \chi_{i} \omega+b \chi_{i} \eta\right) .
\end{aligned}
$$

Since the forms $\chi_{i} \omega$ and $\chi_{i} \eta$ have their support contained in $\varphi_{i}\left(U_{i}\right)$, by the previous case the last integral is equal to

$$
\begin{aligned}
& =\sum_{i}\left(a \int_{M} \chi_{i} \omega+b \int_{M} \chi_{i} \eta\right) \\
& =a \sum_{i} \int_{M} \chi_{i} \omega+b \sum_{i} \int_{M} \chi_{i} \eta \\
& =a \int_{M} \omega+b \int \eta .
\end{aligned}
$$

(b) Positivity: If $\operatorname{sgn}\left(\left.\omega\right|_{p}\right)$ coincides with the orientation of M at every point $p \in M$ where $\left.\omega\right|_{p} \neq 0$, then $\int_{M} \omega \geq 0$, and the inequality is strict unless ω is identically zero.

Solution. First case: Let M be an open set $U \subseteq \mathbb{R}^{n}$, with the standard orientation. In this case we can write $\omega=h \mathrm{~d} x^{0} \wedge \cdots \wedge \mathrm{~d} x^{n-1}$ for some continuous function $h: U \rightarrow \mathbb{R}$, and we have $\operatorname{sgn}\left(\omega_{p}\right)=\operatorname{sgn} h(p)$ for any point $p \in U$, because $\mathrm{d} x^{0} \wedge \cdots \wedge \mathrm{~d} x^{n-1}$ is a positive n-form. Therefore the condition that $\operatorname{sgn}\left(\omega_{p}\right)$ coincides with the orientation of M for all points $p \in U$ where $\omega_{p} \neq 0$ is equivalent to the condition that $h(p) \geq 0$ for all $p \in U$.

Thus we have $\int_{M} \omega=\int_{U} h \geq 0$, and the inequality is strict unless $h \equiv 0$, which means $\omega \equiv 0$.

Second case: Suppose $\operatorname{supp} \omega \subseteq U$ for some local parametrization $\varphi: \widetilde{U} \rightarrow$ U that has constant $\operatorname{sign} \operatorname{sgn} \varphi= \pm 1$. For a point $p=\varphi(\widetilde{p})$ where $\omega_{p} \neq 0$, we have

$$
\operatorname{sgn}\left(\left.\left(\varphi^{*} \omega\right)\right|_{p}\right)=\operatorname{sgn} \varphi \cdot \underbrace{\operatorname{sgn}\left(\left.\omega\right|_{p}\right)}_{=+1}
$$

which implies that $\left.\operatorname{sgn}\left(\varphi^{*} \omega\right)\right|_{p}=\operatorname{sgn} \varphi$. Therefore

$$
\int_{M} \omega=\operatorname{sgn} \varphi \int_{\widetilde{U}} \varphi^{*} \omega \geq 0
$$

and the equality holds if and only if $\varphi^{*} \omega \equiv 0$, iff $\omega \equiv 0$.
General case: We use a family of local parametrizations $\left(U_{i}, \varphi_{i}\right)$ whose images $\varphi_{i}\left(U_{i}\right)$ cover $\operatorname{supp} \omega$ and $\operatorname{supp} \eta$, and a partition of unity $\left(\chi_{i}\right)_{i}$ subordinate to the open cover $\left(U_{i}\right)_{i}$ of the set $\bigcup_{i} \varphi_{i}\left(U_{i}\right)$. Since $\chi_{i} \geq 0$, we have $\operatorname{sgn}\left(\chi_{i} \omega\right) \geq 0$, and therefore $\int_{M} \omega=\sum_{i} \int_{M} \chi_{i} \omega \geq 0$ with equality iff $\chi_{i} \omega=0$ for all i, iff $\omega \equiv 0$.
(c) Diffeomorphism invariance: If $f: N \rightarrow M$ is an diffeomorphism of constant $\operatorname{sign} \operatorname{sgn}(f)= \pm 1$ (i.e. f is either orientation preserving or orientation reversing), then

$$
\int_{N} f^{*} \omega=\operatorname{sgn} f \cdot \int_{M} \omega
$$

Solution. Suppose $\operatorname{supp}\left(f^{*} \omega\right) \subseteq \varphi(\widetilde{U})$ for some local parametrization $\varphi: \widetilde{U} \rightarrow$ N. Then $f \circ \varphi$ is a local parametrization of M such that $\operatorname{supp} \omega \subseteq f(\varphi(U))$, and we have

$$
\int_{N} f^{*} \omega=\int_{\widetilde{U}} \varphi^{*}\left(f^{*} \omega\right)=\int_{\widetilde{U}}(f \circ \varphi)^{*} \omega=\int_{M} \omega
$$

In the general case, the result is deduced easily using partitions unity.
(d) Orientation reversal: If $-M$ denotes M with the reversed orientation, then

$$
\int_{-M} \omega=-\int_{M} \omega
$$

Solution. Let \mathcal{O} be the orientation of M, so that $-\mathcal{O}$ is the orientation of $-M$. Here the most important case is when $\operatorname{supp}(\omega) \subseteq \varphi(\widetilde{U})$ for some local parametrization $\varphi: \widetilde{U} \rightarrow M$. In the formula

$$
\int_{M} \omega:=\operatorname{sgn}_{\mathcal{O}} \varphi \cdot \int_{\widetilde{U}} \varphi^{*} \omega
$$

if we reverse the orientation of M, then the sign of φ is also reversed:

$$
\int_{-M} \omega=\operatorname{sgn}-\mathcal{O} \varphi \cdot \int_{\widetilde{U}} \varphi^{*} \omega=-\operatorname{sgn}_{\mathcal{O}} \varphi \cdot \int_{\widetilde{U}} \varphi^{*} \omega=-\int_{M} \omega
$$

In the general case, the result is deduced easily using partitions unity.
Exercise 13.2. Prove that a continuous k-form is determined by the value of its integrals (Proposition 7.3.12). Hint: Use a chart to move the problem to \mathbb{R}^{n}, then integrate on small pieces of coordinate planes.

Solution. Suppose that our manifold is an open set $U \subseteq \mathbb{R}^{n}$ (considered as a \mathcal{C}^{1} manifold) and $\omega \in \Omega^{k}(U)$ is a continuous k-form. We write $\omega=\sum_{I \in \underline{n}_{\nearrow}^{k}} \omega_{I} \mathrm{~d} x^{I}$. Let $p \in U$ and $I=\left(i_{0}, \ldots, i_{k-1}\right) \in \underline{n}^{k}$ an increasing k-index. We want to show that $\omega_{I}(p)$ is determined by values of k-dimensional integrals of ω.

Let $\iota=\iota_{p, I}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}: y \mapsto x$ where

$$
x^{i}= \begin{cases}y^{s} & \text { if } i=i_{s} \text { for some } s \in \underline{k} \\ p^{i} & \text { otherwise }\end{cases}
$$

We restrict ι to the open set $V=\iota^{-1} U$ and note that the point $\widetilde{p}=\iota^{-1}(p)=$ $\left(p^{i_{s}}\right)_{s \in \underline{k}} \subseteq \mathbb{R}^{k}$ is contained in V.

The pullback by ι of ω is the continuous k-form $\iota^{*} \omega=h \mathrm{~d} y^{0} \wedge \cdots \wedge \mathrm{~d} y^{k-1} \in \Omega^{k}(V)$, where $h=\omega_{I} \circ \iota \in \mathcal{C}(V, \mathbb{R})$.

Denote $D_{\widetilde{p}, \varepsilon} \subseteq \mathbb{R}^{k}$ be the closed ball of center \widetilde{p} and radius $\varepsilon>0$ in \mathbb{R}^{k}, and let $\left|D_{\widetilde{p}, \varepsilon}\right|$ be the volume of this ball. We take ε small enough so that $D_{\widetilde{p}, \varepsilon} \subseteq V$. Then

$$
\frac{1}{\left|D_{\widetilde{p}, \varepsilon}\right|} \int_{D_{\widetilde{p}, \varepsilon}} \iota^{*} \omega=\frac{1}{\left|D_{\widetilde{p}, \varepsilon}\right|} \int_{D_{\widetilde{p}, \varepsilon}} h=\left(\text { average value of } h \text { on } D_{\widetilde{p}, \varepsilon}\right) \xrightarrow{\varepsilon \rightarrow 0} h(\widetilde{p})=\omega_{I}(p) .
$$

This means that we can find out the value of $\omega_{I}(p)$ if we know the value of the integral $\int_{D_{\tilde{p}, \varepsilon}} \iota_{p, I}^{*} \omega$ for every $\varepsilon>0$. Doing this for each increasing k-index $I \in \underline{n}^{k}{ }_{\nearrow}$, we find out the value of $\left.\omega\right|_{p}$ at the point $p \in U$. Thus any continuous k-form $\omega \in \Omega^{k}(U)$ is determined by the value of its integrals of the form $\int_{D_{\widetilde{p}, \varepsilon}} \iota_{p, \varepsilon}^{*} \omega$.

If M is a general \mathcal{C}^{1} manifold and $\omega \in \Omega^{k}(M)$ is a continuous k-form, we use a local parametrization $\varphi: U \rightarrow M$ to get a k-form $\varphi^{*} \omega \in \Omega^{k}(U)$, and then as explained above we can determine this k-form if we know the value of the integrals of the kind

$$
\int_{D_{\widetilde{p}, \varepsilon}} \iota_{p, I}^{*}\left(\varphi^{*} \omega\right)=\int_{D_{\widetilde{p}, \varepsilon}}\left(\varphi \circ \iota_{p, I}\right)^{*} \omega
$$

But knowing $\varphi^{*} \omega$ is equivalent to knowing $\left.\omega\right|_{\varphi(U)}$, thus using different parametrizations (U, φ) we can know ω at all points of M.

Exercise 13.3.* Let $f: M \rightarrow N$ be a smooth map between smooth manifolds. Then for all $\omega \in \Omega^{k}(M)$ we have

$$
f^{*}(\mathrm{~d} \omega)=\mathrm{d}\left(f^{*} \omega\right)
$$

Exercise 13.4.* Let (x, y, z) be the standard coordinates on \mathbb{R}^{3} and let (v, w) be the standard coordinates on \mathbb{R}^{2}. Let $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined as $\phi(x, y, z)=(x+z, x y)$. Let $\alpha=e^{w} \mathrm{~d} v+v \mathrm{~d} w$ and $\beta=v \mathrm{~d} v \wedge \mathrm{~d} w$ be 2 -forms on \mathbb{R}^{2}. Compute the following differential forms:

$$
\alpha \wedge \beta, \quad \phi^{*}(\alpha), \quad \phi^{*}(\beta), \quad \phi^{*}(\alpha) \wedge \phi^{*}(\beta)
$$

Solution. (a) Since $\Omega^{3}\left(\mathbb{R}^{2}\right)$ is just the zero form, whatever α and β are, $\alpha \wedge \beta=0$ (b) We can either use the definition of $\phi^{*}(\alpha)$ to compute the components of this 1-form, or the property that, in local coordinates,

$$
\phi^{*}\left(\alpha_{I} \mathrm{~d} y^{I}\right)=\left(\alpha_{I} \circ \phi\right) \mathrm{d}\left(y^{I} \circ \phi\right)
$$

If we want to use the definition, consider that a basis for $\Omega^{1}\left(\mathbb{R}^{3}\right)$ is given by $\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z$. Following a standard convention, we denote for convenience $\frac{\partial}{\partial x}=\partial_{x}$. Thus we have

$$
\begin{aligned}
\phi^{*}(\alpha)\left(\partial_{x}\right) & =\alpha\left(\mathrm{d} \phi\left(\partial_{x}\right)\right)=\alpha\left(\partial_{v}+y \partial_{w}\right)=e^{w}+y v=e^{x y}+(x+z) y \\
\phi^{*}(\alpha)\left(\partial_{y}\right) & =\alpha\left(\mathrm{d} \phi\left(\partial_{y}\right)\right)=\alpha\left(x \partial_{w}\right)=x v=(x+z) x \\
\phi^{*}(\alpha)\left(\partial_{z}\right) & =\alpha\left(\mathrm{d} \phi\left(\partial_{z}\right)\right)=\alpha\left(\partial_{v}\right)=e^{w}=e^{x y}
\end{aligned}
$$

Thus we obtain

$$
\phi^{*} \alpha=e^{x y}+(x+z) y \mathrm{~d} x+(x+z) x \mathrm{~d} y+e^{x y} \mathrm{~d} z
$$

(c) To compute $\phi^{*} \beta$ we use the other (perhaps more direct) method. It uses the following important property of the pull-back:

$$
\phi^{*}\left(f(x) \mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{k}\right)=(f \circ \phi) \mathrm{d}\left(x^{1} \circ \phi\right) \wedge \cdots \wedge \mathrm{d}\left(x^{k} \circ \phi\right)
$$

Thus we have

$$
\begin{aligned}
\phi^{*}(\beta) & =\phi^{*}(v \mathrm{~d} v \wedge \mathrm{~d} w) \\
& =v(\phi) \mathrm{d}(v(\phi)) \wedge \mathrm{d}(w(\phi)) \\
& =(x+z)(\mathrm{d} x+\mathrm{d} z) \wedge(y \mathrm{~d} x+x \mathrm{~d} y) \\
& =(x+z)(x \mathrm{~d} x \wedge \mathrm{~d} y-y \mathrm{~d} x \wedge \mathrm{~d} z-x \mathrm{~d} y \wedge \mathrm{~d} z)
\end{aligned}
$$

(d) The property $\phi^{*}(\alpha) \wedge \phi^{*}(\beta)=\phi^{*}(\alpha \wedge \beta)$ implies that this is a null form.

Exercise 13.5.* Compute the exterior derivative of the following forms:
(a) on $\mathbb{R}^{2} \backslash\{0\} \theta=\frac{x \mathrm{~d} y-y \mathrm{~d} x}{x^{2}+y^{2}}$.

Solution. Applying the definition of exterior derivative yields
$\mathrm{d} \theta=\mathrm{d}\left(\frac{x}{x^{2}+y^{2}}\right) \wedge \mathrm{d} y+\mathrm{d}\left(\frac{-y}{x^{2}+y^{2}}\right) \wedge \mathrm{d} x=\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \mathrm{~d} x \wedge \mathrm{~d} y-\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \mathrm{~d} y \wedge \mathrm{~d} x=0$
(b) on $\mathbb{R}^{3}, \varphi=\cos (x) \mathrm{d} y \wedge \mathrm{~d} z$.

Solution. $\mathrm{d} \varphi=\mathrm{d}(\cos (x)) \wedge \mathrm{d} y \wedge \mathrm{~d} z=-\sin (x) \mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z$.
(c) on $\mathbb{R}^{3} \omega=A \mathrm{~d} x+B \mathrm{~d} y+C \mathrm{~d} z$.

Solution. Here consider A, B, C as smooth functions on \mathbb{R}^{3}, by definition we have

$$
\begin{aligned}
\mathrm{d} \omega & =\mathrm{d} A \wedge \mathrm{~d} x+\mathrm{d} B \wedge \mathrm{~d} y+\mathrm{d} C \wedge \mathrm{~d} z \\
& =\left(\frac{\partial A}{\partial x} \mathrm{~d} x+\frac{\partial A}{\partial y} \mathrm{~d} y+\frac{\partial A}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} x+\left(\frac{\partial B}{\partial x} \mathrm{~d} x+\frac{\partial B}{\partial y} \mathrm{~d} y+\frac{\partial B}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} y \\
& +\left(\frac{\partial C}{\partial x} \mathrm{~d} x+\frac{\partial C}{\partial y} \mathrm{~d} y+\frac{\partial C}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} z \\
& =-\frac{\partial A}{\partial y} \mathrm{~d} x \wedge \mathrm{~d} y+\frac{\partial A}{\partial z} \mathrm{~d} z \wedge \mathrm{~d} x+\frac{\partial B}{\partial x} \mathrm{~d} x \wedge \mathrm{~d} y-\frac{\partial B}{\partial z} \mathrm{~d} y \wedge \mathrm{~d} z-\frac{\partial C}{\partial x} \mathrm{~d} z \wedge \mathrm{~d} x+\frac{\partial C}{\partial y} \mathrm{~d} y \wedge \mathrm{~d} z \\
& =\left(\frac{\partial B}{\partial x}-\frac{\partial A}{\partial y}\right) \mathrm{d} x \wedge \mathrm{~d} y-\left(\frac{\partial B}{\partial z}-\frac{\partial C}{\partial y}\right) \mathrm{d} y \wedge \mathrm{~d} z+\left(\frac{\partial A}{\partial z}-\frac{\partial C}{\partial x}\right) \mathrm{d} z \wedge \mathrm{~d} x
\end{aligned}
$$

Remark: Notice the resemblance of $\mathrm{d} \omega$ with the curl of a vector field in \mathbb{R}^{3}. Recall that if $F=(A, B, C)$ is a vector field in \mathbb{R}^{3} then

$$
\operatorname{curl} F=\left(C_{y}-B_{z}, A_{z}-C_{x}, B_{x}-A_{y}\right)
$$

One can identify 2-forms with vector fields, by sending $a \mathrm{~d} x \wedge \mathrm{~d} y+b \mathrm{~d} y \wedge \mathrm{~d} z+$ $c \mathrm{~d} z \wedge \mathrm{~d} x$ to the vector field (b, c, a).

Exercise 13.6.* Deduce the following classical theorems from Stokes' theorem.
(a) Green's theorem. Let $D \subseteq \mathbb{R}^{2}$ be a smooth 2-dimensional compact embedded submanifold with boundary in \mathbb{R}^{2}. Then for any differentiable 1-form $\omega=P \mathrm{~d} x+Q \mathrm{~d} y$ defined on an open neighborhood of D we have

$$
\int_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y=\int_{\partial D} P \mathrm{~d} x+Q \mathrm{~d} y
$$

Solution. The differential of ω is

$$
\begin{aligned}
\mathrm{d} \omega & =\mathrm{d} P \wedge \mathrm{~d} x+\mathrm{d} Q \wedge \mathrm{~d} y \\
& =\left(\frac{\partial P}{\partial x} \mathrm{~d} x+\frac{\partial P}{\partial y} \mathrm{~d} y\right) \wedge \mathrm{d} x+\left(\frac{\partial Q}{\partial x} \mathrm{~d} x+\frac{\partial Q}{\partial y} \mathrm{~d} y\right) \wedge \mathrm{d} y \\
& =\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \wedge \mathrm{~d} y .
\end{aligned}
$$

Hence this is a particular case of the Stokes' theorem.
(b) Divergence theorem. Let $A \subset \mathbb{R}^{3}$ be a 3-dimensional compact embedded submanifold with boundary in \mathbb{R}^{3}. Then for any smooth vector field $F: A \rightarrow$ \mathbb{R}^{3} we have

$$
\int_{A} \operatorname{div} F \mathrm{~d} V=\int_{\partial A} F \cdot \mathrm{~d}
$$

wher $\mathrm{d} V:=\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z$ is the standard 3-form on \mathbb{R}^{3} and on the right hand side we have the formal inner product with $\mathrm{d} S=(\mathrm{d} y \wedge \mathrm{~d} z, \mathrm{~d} z \wedge \mathrm{~d} x, \mathrm{~d} x \wedge \mathrm{~d} y)$. Solution. The expression $F \cdot \mathrm{~d} S$ is to be understood as in the lecture notes as the 2 -form $\omega \in \Omega^{2}\left(\mathbb{R}^{3}\right)$ given as the formal inner product between F and $\mathrm{d} S=(\mathrm{d} y \wedge \mathrm{~d} z, \mathrm{~d} z \wedge \mathrm{~d} x, \mathrm{~d} x \wedge \mathrm{~d} y)$, i.e.

$$
\omega=F \cdot \mathrm{~d} S=F_{x} \mathrm{~d} y \wedge \mathrm{~d} z+F_{y} \mathrm{~d} z \wedge \mathrm{~d} x+F_{z} \mathrm{~d} x \wedge \mathrm{~d} y
$$

A direct computation then shows that

$$
\mathrm{d} \omega=\left(\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}\right) \mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z=\operatorname{div}(F) \mathrm{d} V
$$

Hence by Stokes Theorem:

$$
\int_{A} \operatorname{div}(F) \mathrm{d} V=\int_{A} \mathrm{~d} \omega=\int_{\partial A} \omega=\int_{\partial A} F \cdot \mathrm{~d} S
$$

where of course all the forms in the integrals are understood to be restricted to A resp. ∂A.

