Homework 6 (2 $2^{\text {nd }}$ graded homework): due Monday, 25 April 2022
CS-526 Learning Theory

Exercise 1 (adapted from J. Duchi)

$\mathcal{M}_{n}(\mathbb{R})$ is the Hilbert space of $n \times n$ real matrices endowed with the inner product $\langle A, B\rangle=$ $\operatorname{Tr}\left(A^{T} B\right)$. The induced norm is the Euclidian (or Frobenius) norm, i.e.,

$$
\|A\|=\sqrt{\operatorname{Tr}\left(A^{T} A\right)}=\left(\sum_{i, j=1}^{n}\left(A_{i j}\right)^{2}\right)^{1 / 2}
$$

Consider the cone of $n \times n$ symmetric positive semi-definite matrices, denoted $\mathcal{S}_{n}^{+} \subseteq \mathcal{M}_{n}(\mathbb{R})$. For all $A \in \mathcal{S}_{n}^{+}, \lambda_{\max }(A)$ is the maximum eigenvalue associated to A. We define

$$
\begin{aligned}
f: \begin{array}{rll}
\mathcal{S}_{n}^{+} & \rightarrow[0,+\infty) \\
A & \mapsto & \lambda_{\max }(A)
\end{array} .
\end{aligned}
$$

a) Show that f is convex.
b) Find a subgradient $V \in \partial f(A)$ for any $A \in \mathcal{S}_{n}^{+}$.

Hint: A subgradient of f at A is a matrix $V \in \mathbb{R}^{n \times n}$ that satisfies:

$$
\forall B \in \mathcal{S}_{n}^{+}: f(B) \geq f(A)+\operatorname{Tr}\left((B-A)^{T} V\right)
$$

Exercise 2 (adapted from 14.3, Understanding Machine Learning)

Let $S=\left(\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{m}, \mathbf{y}_{m}\right)\right) \in\left(\mathbb{R}^{d} \times\{-1,+1\}\right)^{m}$. Assume that there exists $\mathbf{w} \in \mathbb{R}^{d}$ such that for every $i \in[m]$ we have $y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \geq 1$, and let \mathbf{w}^{\star} be a vector that has the minimal norm among all vectors that satisfy the preceding requirement. Let $R=\max _{i}\left\|\mathbf{x}_{i}\right\|$. Define a function $f(\mathbf{w})=\max _{i \in[m]}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)$.
a) Show that $\min _{\mathbf{w}:\|\mathbf{w}\| \leq\|\mathbf{w} \star\|} f(\mathbf{w})=0$.
b) Show that any \mathbf{w} for which $f(\mathbf{w})<1$ separates the examples in S.
c) Show how to calculate a subgradient of f.
d) Describe a subgradient descent algorithm for finding a \mathbf{w} that separates the examples. Show that the number of iterations T of your algorithm satisfies

$$
T \leq R^{2}\left\|\mathbf{w}^{*}\right\|^{2} .
$$

Hint: it is a good idea to take a look at the Batch Perceptron algorithm in Section 9.1.2. for the analysis.
e) (Not graded) Compare your algorithm to the Batch Perceptron algorithm.

Exercise 3

Consider the following Least Squares optimization problem:

$$
\mathbf{x}^{*}=\arg \min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2},
$$

where $b \in \mathbb{R}^{m}$, A is a full column rank matrix in $\mathbb{R}^{m \times n}, n \leq m$ and there exists a solution to the linear system $A \mathbf{x}=\mathbf{b}$. Let $\sigma_{\max }$ and $\sigma_{\min }$ be the largest and the smallest singular values of A and consider the gradient descent method

$$
\mathbf{x}^{t+1}=\mathbf{x}^{t}-\alpha \nabla f\left(\mathbf{x}^{t}\right)
$$

with a fixed step size $\alpha=1 / \sigma_{\max }(A)^{2}$.
a) Show that $\sigma_{\max }\left(I-\alpha A^{T} A\right)=1-\alpha \sigma_{\min }(A)^{2}=1-\frac{\sigma_{\min }(A)^{2}}{\sigma_{\max }(A)^{2}}$.
b) Calculate the gradient $\nabla f(\mathbf{x})$ and rewrite the GD using this gradient.
c) Show that the procedure converges as

$$
\left\|\mathbf{x}^{t+1}-\mathbf{x}^{*}\right\|_{2} \leq\left(1-\frac{\sigma_{\min }(A)^{2}}{\sigma_{\max }(A)^{2}}\right)\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|_{2}
$$

