
Solutions to Graded Homework 2
CS-526 Learning Theory

Exercise 1

a) Fix A,B ∈ S+
n and α ∈ [0, 1]. Let e ∈ Rn a unit-norm eigenvector of αA + (1 − α)B

associated to the maximum eigenvalue, i.e., (αA+ (1−α)B)e = λmax(αA+ (1−α)B)e and
‖e‖ = 1. We have:

f(αA+ (1− α)B) = eT (αA+ (1− α)B)e = αeTAe + (1− α)eTBe

≤ αλmax(A) + (1− α)λmax(B)

= αf(A) + (1− α)f(B) .

This shows that f is convex.
b) Let A ∈ S+

n . A subgradient of f at A is a matrix V ∈ Rn×n that satisfies:

∀B ∈ S+
n : f(B) ≥ f(A) + Tr

(
(B − A)TV

)
.

Consider any e ∈ Rn which is a unit-norm eigenvector of A associated to the maximum
eigenvalue, i.e., Ae = λmax(A)e and ‖e‖ = 1. Then for all B ∈ S+

n :

f(A) = λmax(A) = eTAe = eTBe + eT (A−B)e ≤ λmax(B) + eT (A−B)e

= f(B) + Tr(eT (A−B)e)

= f(B) + Tr((A−B)TeeT ) .

In the last equality we used that (A−B)T = A−B and that the trace is preserved by cyclic
permutations. We see that eeT satisfies the definition of a subgradient: eeT ∈ ∂f(A).

Exercise 2

a) min‖w‖≤‖w∗‖ f(w) ≤ f(w∗) ≤ 0 because ∀i ∈ [m] : yi〈w∗,xi〉 ≥ 1. Suppose there exists
w satisfying both ‖w‖ ≤ ‖w∗‖ and f(w) < 0. Then w can be slightly modify to obtain a
vector w̃ such that ‖w̃‖ < ‖w∗‖, while still having f(w̃) ≤ 0. It contradicts w∗’s definition,
hence min‖w‖≤‖w∗‖ f(w) ≥ 0. It proves min‖w‖≤‖w∗‖ f(w) = 0.

b) If f(w) < 1 then ∀i ∈ [m] : yi〈w∗,xi〉 > 0, i.e., w separates the examples.

c) For all i ∈ [m] the gradient of fi : w 7→ 1 − yi〈w,xi〉 is −yixi. Applying Claim 14.6,
we get that a subgradient of f at w is given by −yi∗xi∗ where i∗ ∈ arg maxi∈[m]{1−yi〈w,xi〉}.

d) The algorithm is inialized with w(1) = 0. At each iteration, if f(w(t)) ≥ 1 then it
chooses i∗ ∈ arg mini∈[m]{yi〈w(t),xi〉} and updates w(t+1) = w(t) + ηyi∗xi∗ . Otherwise, if
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f(w(t)) < 1, w(t) separates all the examples and we stop. To analyze the speed of convergence
of the subgradient algorithm, first notice that 〈w∗,w(t+1)〉 − 〈w∗,w(t)〉 = ηyi∗〈w∗,xi∗〉 ≥ η.
Therefore, after performing T iterations, we have

〈w∗,w(T+1)〉 = 〈w∗,w(T+1)〉 − 〈w∗,w(1)〉 =
T∑
t=1

〈w∗,w(t+1)〉 − 〈w∗,w(t)〉 ≥ ηT . (1)

Besides, ‖w(t+1)‖2 = ‖w(t)‖2 + η2y2i∗‖xi‖2 + 2ηyi〈w(t),xi∗〉 ≤ ‖w(t)‖2 + η2R2. The last
inequality follows from ‖xi‖ ≤ R and yi〈w(t),xi∗〉 ≤ 0 (we update only if f(w(t)) ≥ 1). Then

‖w(T+1)‖ ≤ ηR
√
T . (2)

Combining Cauchy-Schwarz inequality, (1) and (2), we obtain

1 ≥ 〈w∗,w(T+1)〉
‖w(T+1)‖‖w∗‖

≥
√
T

R‖w∗‖
. (3)

The subgradient algorithm must stop in less than R2‖w∗‖2 iterations. We see that η does
not affect the speed of convergence.

e) The algorithm is almost identical to the Batch Perceptron algorithm with two modifi-
cations. First, the Batch Perceptron updates with any example for which yi〈w(t),xi〉 ≤ 0,
while the current algorithm chooses the example for which yi〈w(t),xi〉 is minimal. Second,
the current algorithm employs the parameter η. However, the only difference with the case
η = 1 is that it scales w(t) by η.

Exercise 3

a) Assume that A has the singular value decomposition UΛV T . Plugging this into the
expression I − αATA we see that I − αATA has the singular value decomposition V Λ′V T ,
where Λ′ is of dimension n× n and has the singular values 1− ασ2

i . For the given choice of

α all these singular values are non-negative and the largest is 1− ασ2
min(A) = 1− σ2

min(A)

σ2
max(A)

.

b) We get
∇f(x) = AT (Ax− b) = ATA(x− x∗),

where we used the fact that A has full column rank so that Ax∗ = b. Hence GD can be
rewritten as

xt+1 = xt − αATA(xt − x∗). (4)

c) Subtracting x∗ from both sides of (4) gives

xt+1 − x∗ = xt − x∗ − αATA(xt − x∗) = (I − αATA)(xt − x∗).

By taking norms we obtain

||xt+1 − x∗||2 ≤ σmax(I − αATA)||xt − x∗||2
= (1− ασmin(A)2)||xt − x∗||2.
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