Note: The tensor product is denoted by \otimes. In other words, for vectors $\vec{a}, \vec{b}, \vec{c}$ we have that $\vec{a} \otimes \vec{b}$ is the square array $a^{\alpha} b^{\beta}$ where the superscript denotes the components, and $\vec{a} \otimes \vec{b} \otimes \vec{c}$ is the cubic array $a^{\alpha} b^{\beta} c^{\gamma}$. We denote components by superscripts because we need the lower index to label vectors themselves.

Problem 1: Whitening of a tensor

Consider the tensor

$$
T=\sum_{i=1}^{K} \lambda_{i} \vec{\mu}_{i} \otimes \vec{\mu}_{i} \otimes \vec{\mu}_{i}
$$

where $\vec{\mu}_{i} \in \mathbb{R}^{D}$ are linearly independent (so $K \leq D$) and λ_{i} are strictly positive. Consider the matrix

$$
M=\sum_{i=1}^{K} \lambda_{i} \vec{\mu}_{i} \otimes \vec{\mu}_{i}=\sum_{i=1}^{K} \lambda_{i} \vec{\mu}_{i} \vec{\mu}_{i}^{T} .
$$

Note that this is a rank- K symmetric positive semi-definite matrix (there are $D-K$ zero eigenvalues). Denote $d_{1} \geq d_{2} \geq \cdots \geq d_{K}$ the strictly positive eigenvalues of M and $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{K}$ the corresponding eigenvectors. Hence $M=U \operatorname{Diag}\left(d_{1}, \ldots, d_{K}\right) U^{T}$ where $U=\left[\begin{array}{llll}\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{K}\end{array}\right]$. Define the $D \times K$ matrix:

$$
W=U \operatorname{Diag}\left(d_{1}^{-1 / 2}, d_{2}^{-1 / 2}, \cdots, d_{K}^{-1 / 2}\right) .
$$

The whitening of T is defined as the new tensor obtained by the multilinear transform

$$
T(W, W, W):=\sum_{i=1}^{K} \lambda_{i}\left(W^{T} \vec{\mu}_{i}\right) \otimes\left(W^{T} \vec{\mu}_{i}\right) \otimes\left(W^{T} \vec{\mu}_{i}\right)=\sum_{i=1}^{K} \nu_{i} \vec{v}_{i} \otimes \vec{v}_{i} \otimes \vec{v}_{i}
$$

where $\nu_{i}=\lambda_{i}^{-1 / 2}$ and $\vec{v}_{i}=\sqrt{\lambda_{i}} W^{T} \vec{\mu}_{i}$.

1. Show that $W^{T} M W=I$ where I is the $K \times K$ identity matrix. Deduce that the \vec{v}_{i} 's are orthonormal, i.e., $V^{T} V=I$ where $V=\left[\begin{array}{lll}\vec{v}_{1} & \cdots & \vec{v}_{K}\end{array}\right]$.
2. Suppose we are given a tensor T of the form $T=\sum_{i=1}^{K} \lambda_{i} \vec{\mu}_{i} \otimes \vec{\mu}_{i} \otimes \vec{\mu}_{i}$ and a matrix $M=\sum_{i=1}^{K} \lambda_{i} \vec{\mu}_{i} \vec{\mu}_{i}^{T}$ where $\vec{\mu}_{i} \in \mathbb{R}^{D}$ are linearly independent and $\lambda_{i}>0$.
Explain how applying the tensor power method to the whitened tensor $T(W, W, W)$ helps you recover the λ_{i} 's and μ_{i} 's, and give a closed-form formula for the matrix $\mu=\left[\begin{array}{lll}\vec{\mu}_{1} & \cdots & \vec{\mu}_{K}\end{array}\right]$ that uses $V, \operatorname{Diag}\left(\nu_{1}, \ldots, \nu_{K}\right)$ and W.
