
Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Supervised learning, classification, simple perceptron

1. Classification as a geometric problem

The problem of Classification

input

car (yes or no)

output

the classifier

The problem of Classification

input

+1 yes (or 0 for no)

output

the classifier

f(x)

vector x

Blackboard 1:

from images to vector

Blackboard 2:

from vectors to classification

Classification as a geometric problem

x
x

x
x

x
x

x

o
oo
o

o

o o
o

Blackboard 2:

from vectors to classification

x

x
o

Blackboard 1:

from images to vector

Classification as a geometric problem

Task of Classification

= find a separating surface in the high-dimensional input space

Classification by discriminant function d(x)

 d(x)=0 on this surface; d(x)>0 for all positive examples x

d(x)<0 for all counter examples x

x
x

xx

x
xx

ooo
o o
o o o

x

x
o

d(x)=0

x
x

xx

x
xx

ooo
o o
o

o

o
x

x

o

linearly

separable

problem

d(x)=0

𝑑 𝒙𝜇 > 0

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Supervised learning, classification, simple perceptron

1. Classification as a geometric problem

2. Supervised learning

Data base for Supervised learning

input

car (yes)

Classifier

output

Techerteacher

𝒙𝜇

 𝑦𝜇 = 1𝑡𝜇 = 1target output classifier output

Supervised learning

input

car =yes

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃 ;

target output

𝑡𝜇 = 1

P data points

𝑡𝜇 = 0 car =no

Data base for Supervised learning

input

car (no)

Classifier

output

Techerteacher

𝒙7

𝑡7 = 1target output classifier output
error!

 𝑦7 = 0

Error in Supervised learning

input

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃 ;

target output

P data points

for each data point , the classifier gives an output 𝑦
𝜇

 𝑦𝜇 ≠ 𝑡𝜇

𝒙𝜇

 use errors for optimization of classifier

Remark: for multi-class problems y and t are vectors

Remark: Errors can be used to define a ‘Loss function’.

Summary: Supervised learning

input

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃 ;

target output

1. Data base

for compare classifier output 𝑦
𝜇

with 𝑡𝜇

 𝜇 𝐸 (𝑦𝜇, 𝑡𝜇)

𝒙𝜇

3. A method to minimize the errors

2. A way to measure errors

Error function/Loss function

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Supervised learning, classification, simple perceptron

1. Classification as a geometric problem

2. Supervised learning

3. Gradient descent for a single sigmoidal output unit

Classifier = neural network with 1 single neuron

input

car (no)

output

Techerteacher

𝒙7

𝑡7 = 1target output classifier output
error!

 𝑦7 = 0

Sigmoidal output unit

𝑥𝑁+1𝒙 ∈ 𝑅𝑁+1

 𝑦
𝜇

= 𝑔 𝒘𝑇𝒙𝜇 = 𝑔(𝑘=1
𝑁+1 𝑤𝑘 𝑥𝑘

𝜇
)

𝑔 𝑎 =
exp(𝑎)

1 + exp(𝑎)
=

1

1 + exp(−𝑎)

𝑎

1

0

A saturating nonlinear function with a smooth transition from 0 to 1.

with

Supervised learning with sigmoidal output

input

output

Techerteacher

𝒙7

 𝑦7 = 0.2𝑡7 = 1target output classifier output
error!

𝜗
Classifier

𝒇(𝒙7) = 𝑔 𝒘𝑇𝒙𝜇

𝑤𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

 𝑦
𝜇

= 𝑔 𝒘𝑇𝒙𝜇

𝑎

1

0

𝐸(𝒘) =
1

2

𝜇=1

𝑃

𝑡
𝜇

− 𝑦𝜇 2

Loss function: define quadratic error

gradient descent

Supervised learning with sigmoidal output

𝑤𝑘

𝐸
∆𝑤𝑘 = −𝛾

𝑑𝐸

𝑑𝑤𝑘

Gradient descent calculation: ‘batch’ and ‘online’

Batch: one update step after all patterns have been applied

Online/Stochastic Gradient Descent (SGD):

- one update step after each pattern

- one ‘epoch’ = P patterns have been applied

In both cases, we cycle several times over all patterns

𝑤𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

𝐸(𝒘) =
1

2𝑃

𝜇=1

𝑃

𝑡
𝜇

− 𝑦
𝜇 2

Quadratic error

gradient descent

Gradient descent

𝑤𝑘

𝐸
𝑤𝑘 = −𝛾

𝑑𝐸

𝑑𝑤𝑘

Exercise 1 now:
- calculate gradient

- limit to one pattern

- geometric interpretation?

 𝑦
𝜇

= 𝑔 𝒘𝑇𝒙𝜇

Exercise Sheet

Exercise 1 now
- calculate gradient

- apply only 1 pattern

- geometry/vector?

Lecture continues

at 14h15

Stochastic gradient descent algorithm (for simple perceptron)

Gradient Descent: Simple Perceptron (in N+1 dimensions)

- set 𝜸 = 0.01 (learning rate; P patterns in total, index m)

- choose M (number of epochs)

(1) For counter k < P M

- randomly choose pattern 𝜇
- calculate output

- update by

- increase counter k k+1

(2a) stop if change during last P patterns was acceptably small

(2b) else, decrease 𝛾 , reset k to k=1 and return to (1)

∆𝒘 = 𝛾 𝑡𝜇 − 𝑦
𝜇

𝑔′𝒙𝜇

 𝑦
𝜇

= 𝑔(𝒘𝑇𝒙𝜇)

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Supervised learning, classification, simple perceptron

1. Classification as a geometric problem

2. Supervised learning

3. Gradient Descent for a single sigmoidal unit

4. Simple Perceptron (threshold unit)

3. Single-Layer threshold network: simple perceptron

output

the classifier

f(x)

vector x

 𝑦 = 𝑔

𝑘

𝑤𝑘 𝑥𝑘

𝑤𝑘

𝑥𝑘

+1 if

0 if

 𝑦 = 𝑓(𝒙)

 𝑦 = 𝑔 𝑎′ =
𝑎′ > 𝜗
𝑎′ < 𝜗

Blackboard 3: Geometry of

perceptron: hyperplane

Single-Layer networks: simple perceptron

input

output

vector x

 𝑦
𝜇

= 𝑔

𝑘

𝑤𝑘 𝑥𝑘

𝑤𝑖𝑘

𝑥𝑘



 𝑦
𝜇

= 0.5[1 + 𝑠𝑔𝑛 𝑘 𝑤𝑘 𝑥𝑘 − 𝜗]

a

a’
a’

g(a’)

g(a’)=
1 if a’> 




0.5 if a’=
0 if a’<

x
x

xx

x
xx

ooo
o o
o

o

o
x

x

o

imposes a linear

separation

Single-Layer networks: simple perceptron

vector x

𝑤𝑖𝑘

𝑥𝑘

 𝑦 = 0.5[1 + 𝑠𝑔𝑛 𝑘 𝑤𝑘 𝑥𝑘 − 𝜗]

𝑑 𝒙 =

𝑘

𝑤𝑘 𝑥𝑘 − 𝜗 = 0

Discriminant function

x
x

x
x

o
o

o

o

remove threshold: add a constant input

𝑤𝑖𝑘

𝑥𝑘

𝑑 𝒙 =

𝑘=1

𝑁

𝑤𝑘 𝑥𝑘 − 𝜗 = 0

𝒙 ∈ 𝑅𝑁

x

x
x

o
o

o
o

x

-1

0

𝑤𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

𝑑 𝒙 =

𝑘=1

𝑁+1

𝑤𝑘 𝑥𝑘 = 0

Single-Layer networks: simple perceptron

a simple perceptron

- can only solve linearly separable problems

- imposes a separating hyperplane

- for hyperplane goes through origin

- threshold parameter can be removed by

adding an input dimension

- in N+1 dimensions hyperplane always

goes through origin

- we can adapt the weight vector to the

problem: this is called ‘learning’

𝜗

𝜗 = 0

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Supervised learning, classification, simple perceptron

1. Classification as a geometric problem

2. Supervised learning

3. Gradient descent: Single-layer sigmoidal unit

4. Simple Perceptron (threshold unit)

5. Perceptron Algorithm

Perceptron algorithm: turn weight vector (in N+1 dim.)

ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒: 𝑑 𝒙 =

𝑘=1

𝑁+1

𝑤𝑘 𝑥𝑘 = 𝒘𝑇𝒙 = 0

x

x x
x

o

o

o
o

x

x x
x

o

o

o
o

𝒘 𝒘

idea: ‘turn weight vector’

Perceptron algorithm

geometry of perceptron algorithm:

turn weight vector ∆𝒘~𝒙𝜇

Perceptron algo (in N+1 dimensions):

- set g = 0.1

(1) cycle many times through all patterns

- choose pattern 𝜇
- calculate output

- update by

- iterate 𝜇 ← (𝜇 + 1)𝑚𝑜𝑑𝑷, back to (1)

(2) stop if no changes for all P patterns

∆𝒘 = 𝛾[𝑡𝜇 − 𝑦
𝜇
]𝒙𝜇

 𝑦
𝜇

= 0.5[1 + 𝑠𝑔𝑛(𝒘𝑇𝒙𝜇)]

Blackboard 4: geometry of

the perceptron algorithm:

Turn weight vector

∆𝒘 = 𝛾[𝑡𝜇 − 𝑦
𝜇
]𝒙𝜇

 𝑦
𝜇

= 0.5[1 + 𝑠𝑔𝑛(𝒘𝑇𝒙𝜇)]

update

output

Perceptron algorithm: theoreom

x

x x
x

o

o

o
o

𝒘

If the problem is linearly separable, the perceptron

algorithm converges in a finite number of steps.

Proof: in many books, e.g.,

Bishop, 1995,
Neural Networks for Pattern Recognition

Summary: Perceptron algorithm

x

x x
x

o

o

o
o

𝒘

- Perceptron algorithm can solve

linearly separable problems

- Cycle several times though all patterns

until nothing changes during a full cycle

- Update proportional to weight vector

- Proof shows: - initial value of w not important

- learning rate g not important

Reason: length of w grows, but only direction matters

∆𝒘~𝒙𝜇

Quiz: Perceptron algorithm

The input vector has N dimensions and we apply a perceptron algorithm.

[] A change of parameters corresponds always to a rotation of the separating

hyperplane in N dimensions.

[] A change of the separating hyperplane implies a rotation of the hyperplane

in N+1 dimensions.

In the following change of length means 𝒘 + ∆𝒘 = β𝒘 i.e., same direction

[] An increase of the length of the weight vector implies an increase of the

distance of the hyperplane from the origin in N dimensions.

[] An increase of the length of the weight vector implies that the hyperplane

does not change in N dimensions

[] An increase of the length of the weight vector implies that the hyperplane

does not change in N+1 dimensions

[]

[x]

[]

[]

[x]

Compare Perceptron algo / online gradient descent (single layer)

Single unit (in N+1 dimensions), threshold/sigmoidal

- set 𝜸 (small learning rate; P patterns in total, index m)

- choose M (number of epochs)

(1) For counter k < P M

- randomly choose pattern 𝜇
- calculate output

- update by
∆𝒘 = 𝛾𝐹 𝑡𝜇 , 𝑦

𝜇
𝒙𝜇

 𝑦
𝜇

= 𝑔(𝒘𝑇𝒙𝜇)

For both algorithms (perceptron algo/stoch. gradient descent):

Mismatch in output  rotation of hyperplane (in N+1 dimensions)

Gradient descent algorithm (stochastic gradient descent)

x

x x
x

o

o

o
o

𝒘

∆𝒘 = 𝛾𝛿(𝜇)𝒙𝜇

- amount of change depends

on , prop. to the

(signed) output mismatch

for this data point

- change implemented

even if ‘correctly’ classified

- change proportional to 𝒙𝜇

- similar to perceptron

algorithm (see next section)

𝛿(𝜇)

After presentation of pattern 𝒙𝜇 update the weight vector by

𝛿 𝜇 = 𝑡𝜇 − 𝑦
𝜇

𝑔′

Learning outcome and conclusions for today:

- understand classification as a geometrical problem

- discriminant function of classification

- linear versus nonlinear discriminant function

- linearly separable problems

- perceptron algorithm

- gradient descent for simple perceptrons

- understand learning as a geometric problem

The

END

Reading for this week:

Bishop, Ch. 4.1.7 of

Pattern recognition and Machine Learning

or

Bishop, Ch. 3.1-3.5 of

Neural networks for pattern recognition

Motivational background reading:

Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a

General Reinforcement Learning Algorithm

Goodfellow et al., Ch. 1 of

Deep Learning

