Wulfram Gerstner

nrtiiicial Neural Netwnrks EPFL, Lausanne, Switzerland
supervised learning, classification, simple perceptron

1. Classification as a geometric problem

The prohliem of Glassification
car (yes or no)

output 1

The prohliem of Glassification
+1 yes (or O for no)

output |

INnput

Vector X

Blackboard 1: :
kfrom Images to vector

/Blackboard 2:
Kfrom vectors to classification

/

/Blackboard 1:

from Images to vector

Blackboard 2:
from vectors to classification
N /

Task of Classification
= fInd a separating surface In the high-dimensional input space
Classification by discriminant function d(x)

- d(Xx)=0 on this surface; d(x)>0 for all positive examples x
d(x)<O0 for all counter examples x

d(x)=0 d(x)=0
\ o [y linearly
v X ,,
" X 0. O/x x separable
%93 z §0o J
§8 %y dxt) >0 /7 X problem
OIX O , X
,—Q__Q»"/ X / X
. X X :

X 0/x X

Wulfram Gerstner

nrtiiicial Neural Netwnrks EPFL, Lausanne, Switzerland
supervised learning, classification, simple perceptron

1. Classification as a geometric problem
2. Supervised learning

target output t* =1 output Y* =1 classifier output

car (yes)

teacher

P data points { (x%t*) , 1<u<P };
[\

INput target output

tt =1 car =yes
tt =0 car=no

error! car (no) .
target output t’ =1 «— $’ =0 classifier output
output i

teacher

input_{ ?? ? ??

P data points { (x%t*) , 1<u<P };
[\

input target output

for each data point x#, the classifier gives an output $*

-> use errors yH* #= t* for optimization of classifier

Remark: Errors can be used to define a ‘Loss function’.

Remark: for multi-class problems y and t are vectors

Summary: Supervised learning

1. Database { (% t*) , 1<u<P }
[

input target output

2. A way to measure errors
for x# compare classifier output y* with t*

Y., E(@*, t#) Error function/Loss function

3. A method to minimize the errors

Wulfram Gerstner

nrtiiicial Neural NEtworks EPFL, Lausanne, Switzerland
supervised learning, classification, simple perceptron

1. Classification as a geometric problem
2. Supervised learning
3. Gradient descent for a single sigmoidal output unit

Glassifier = neural network with 1single neuron

error! car (no) .
target output t’ =1 97 =0 classifier output
output 1

teacher

A saturating nonlinear function with a smooth transition from 0 to 1.

pr = gwixt) = gEriiwex,)

exp(a) 1
1+ exp(a) 1+ exp(—a)

g) P

w

N+1
X ER XN+1

Supervised learning with sigmoidal output
error!

y7 — 0.2 classifier output

target output t’ =1
output 1
f(x7) = g(w"xH)

teacher

4

Loss function: define quadratic error 1
P
1 <y 12 e
_ - o SH -
E(w) = > z [t] —_—
u=1 0
gradient descent IE
Aw,, = —
Wi dek

E | y" = gwx*)

Wi, Y € RN+1

WNt+1 —

XN+1 =

—1

Gradient descent calculation: ‘batch’ and ‘online’

Batch: one update step after all patterns have been applied

Online/Stochastic Gradient Descent (SGD):
- one update step after each pattern
- one ‘epoch’ = P patterns have been applied

In both cases, we cycle several times over all patterns

Quadratic error

P
1
E(W) — 52 [tﬂ _}7“]2
u=1

gradient descent

E

<

'Exercise 1 now:

- calculate gradient

- limit to one pattern
- geometric interpretation?

4

P = g(wTx#)

WNt+1 —

XN+1 =

—1

@ N
Artificial Neural Networks (Gerstner). Exercises for week | ecture continues

at 14h15

Week 1: Simple Perceptrons, Geometric interpretation, Discriminant

1. Gradient of quadratic error function \ Y
We define the mean square error in a data base with P patterns as
BB (w) = 5 [t~ (1)
2P~
where the output is ExerCISe 1 NOW
J" = g(a*) = g(w" x*) = g(3_ wi) - calculate gradient
k
and the input is the pattern x* with components zf . . If;r = apply Only 1 pa’[’[ern
(a) Calculate the update of weight w; by gradient descent (batch rule) - geOmetry/VGCtOr?
dE
Aw; = (3)

dw 4

Hint: Apply chain rule

(b) Rewrite the formula by taking one pattern at a time (stochastic gradient descent). What
is the difference to the batch rule? What is the geometric interpretation? Compare-with—the—

pereeptronaleorithm!

Gradient Descent: Simple Perceptron (In N+1 dimensions)
-set y = 0.01 (learning rate; P patterns In total, index n)
- choose M (number of epochs)
(1) For counter k < P M
- randomly choose pattern u
- calculate output o
y© =gw xt)
- update by Aw = p[th — 5] g'xH
- Increase counter k<& k+1
(2a) stop If change during last P patterns was acceptably small
(2b) else, decrease y, reset k to k=1 and return to (1)

Wulfram Gerstner

nrtiiicial Neural NEtworks EPFL, Lausanne, Switzerland
supervised learning, classification, simple perceptron

Classification as a geometric problem
Supervised learning

Gradient Descent for a single sigmoidal unit
Simple Perceptron (threshold unit)

=~ W Nk

3. Single-Layer threshold network: simple perceptron

5 = g(a)= [+1if a' >0
Y TIT 1 oifa <9

) =f

) () output |
=9 Z Wi Xk
K

the classifier

Wi

Xk vector x

. perceptron: hyperplane

" Blackboard 3: Geometry of

/

single-Layer networks: simple perceptron

57“ = 0.5[1 + sgn(Q., wy, x5, —)]

)
!

output 9% =g (2 Wi xk) T g@)
k

Wi o — g
’ 1 ifa> g
gl@)=4 0.5ifa= 9
Xk i 0 ifa’< 19

nput yector x

Single-Layer networks: simple perceptron
5; — 05[1 +Sgn(Zka xk —19)]
Discriminant function

d(X) ZEkak—l? = 0
k

Wik o x imposes a linear
0/x X Separation
ORI
Xy o/ X
,f X
v X

vector X O /X

N
d(X) ZZkak—ﬁ = (
k=1

x € RN

single-Layer networks: simple perceptron

a simple perceptron
- can only solve linearly separable problems
- Imposes a separating hyperplane
- for ¥ =0 hyperplane goes through origin
- threshold parameter 9 can be removed by
adding an input dimension
- In N+1 dimensions hyperplane always
goes through origin
- we can adapt the weight vector to the
problem: this is called ‘learning

Wulfram Gerstner

nrtiiicial Neural NEtworks EPFL, Lausanne, Switzerland
supervised learning, classification, simple perceptron

Classification as a geometric problem
Supervised learning

Gradient descent: Single-layer sigmoidal unit
Simple Perceptron (threshold unit)
Perceptron Algorithm

O~ Wb

Perceptron algorithm: turn weight vector (in N+1dim.)

N+1

hyperplane: d(x) = 2 wrx, =wix =0
k=1

idea: ‘turn weight vector

Perceptron algorithm
E

geometry of perceptron algorithm:
~ turn weight vector Aw~x#

/

Perceptron algo (in N+1 dimensions):
-Sely=0.1
(1) cycle many times through all patterns
- choose pattern u
- calculate output
9% = 0.5[1 + sgn(wTx*)]
- update by
Aw = y[tH — 9" JxH
- Iterate u « (u + 1)modP, back to (1)
(2) stop If no changes for all P patterns

" Blackboard 4: geometry of :
the perceptron algorithm:
_Turn weight vector y

output
% = 0.5[1 + sgn(wT x#)]
update

Aw = y[tH — 9"]xH

If the problem is linearly separable, the perceptron
algorithm converges In a finite number of steps.

Proof: In many books, e.qg.,
Bishop, 1995,

Neural Networks for Pattern Recognition

summary: Perceptron algorithm

- Perceptron algorithm can solve
linearly separable problems

- Cycle several times though all patterns ~ % X
until nothing changes during a full cycle A

- Update proportional to weight vector Aw~x*
- Proof shows: - initial value of w not important

- learning rate y not important
Reason: length of w grows, but only direction matters

The input vector has N dimensions and we apply a perceptron algorithm.

| | A change of parameters corresponds always to a rotation of the separating
hyperplane in N dimensions.

|] A change of the separating hyperplane implies a rotation of the hyperplane

IN N+1 dimensions.

In the following change of length means w + Aw = Bw I.e., same direction

|] An Increase of the length of the weight vector implies an increase of the
distance of the hyperplane from the origin in N dimensions.

[] An Increase of the length of the weight vector implies that the hyperplane
does not change in N dimensions

|] An Increase of the length of the weight vector implies that the hyperplane
does not change in N+1 dimensions

Gompare Perceptron algo / online gradient descent (single layer)

Single unit (in N+1 dimensions), threshold/sigmoidal
-set y (small learning rate; P patterns In total, index)
- choose M (number of epochs)
(1) For counter k < P M
- randomly choose pattern u
- calculate output o
y© =gw xt)

- Update by Aw — yF[t“,f/“]x“

For both algorithms (perceptron algo/stoch. gradient descent):
Mismatch in output - rotation of hyperplane (in N+1 dimensions)

Gradient descent algorithm (stochastic gradient descent]
After presentation of pattern x* update the weight vector by

Aw =y (u)x* s(u) = [t* — 9"]9’

- amount of change depends
on o(u), prop. to the
(signed) output mismatch
for this data point

- change implemented
even If ‘correctly’ classified

- change proportional to x*

- similar to perceptron
algorithm (see next section)

Learning outcome and conclusions for today:
- understand classification as a geometrical problem
- discriminant function of classification
- linear versus nonlinear discriminant function
- linearly separable problems
- perceptron algorithm
- gradient descent for simple perceptrons
- understand learning as a geometric problem

Reading for this week:

Bishop, Ch. 4.1.7 of
Pattern recognition and Machine Learning

or I
Bishop, Ch. 3.1-3.5 of h e

Neural networks for pattern recognition

Motivational background reading: E N D
Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm

Goodfellow et al., Ch. 1 of
Deep Learning

