Artificial Neural Networks Supervised learning, classification, simple perceptron

1. Classification as a geometric problem

Wulfram Gerstner EPFL, Lausanne, Switzerland

The problem of Classification

output

input

car (yes or no)

the classifier

The problem of Classification

output

input

+1 yes (or 0 for no)

the classifier f(x)

vector **x**

Blackboard 1: from images to vector

Blackboard 2: from vectors to classification

Classification as a geometric problem

from vectors to classification

Classification as a geometric problem Task of Classification = find a **separating surface** in the high-dimensional input space Classification by **discriminant function** d(x) $\rightarrow d(x)=0$ on this surface; d(x)>0 for all positive examples xd(x)<0 for all counter examples x

 $d(\mathbf{x}) < 0$ for all counter examples \mathbf{x} $d(\mathbf{x})=0$ inearly x separable

Artificial Neural Networks Supervised learning, classification, simple perceptron

- 1. Classification as a geometric problem
- 2. Supervised learning

Wulfram Gerstner EPFL, Lausanne, Switzerland

Data base for Supervised learning

$\hat{y}^{\mu} = 1$ classifier output Classifier

 x^{μ}

Supervised learning

$P \text{ data points} \quad \{ \begin{array}{c} (x^{\mu}, t^{\mu}) \\ | \end{array}, \begin{array}{c} 1 \leq \mu \leq P \end{array} \};$ input target output

 $t^{\mu} = 1$ car =yes $t^{\mu} = 0$ car = no

classifier output

Error in Supervised learning

$P \text{ data points} \quad \{ \begin{array}{c} (x^{\mu}, t^{\mu}) \\ | \end{array}, \begin{array}{c} 1 \leq \mu \leq P \end{array} \};$ input target output

for each data point x^{μ} , the classifier gives an output \hat{y}^{μ}

 \rightarrow use errors $\hat{y}^{\mu} \neq t^{\mu}$ for optimization of classifier

Remark: Errors can be used to define a 'Loss function'.

Remark: for multi-class problems y and t are vectors

Summary: Supervised learning

1. Data base { (x^{μ}, t^{μ}) , $1 \le \mu \le P$ }; input target output

2. A way to measure errors

3. A method to minimize the errors

for x^{μ} compare classifier output \hat{y}^{μ} with t^{μ}

 $\sum_{\mu} E(\hat{y}^{\mu}, t^{\mu})$ Error function/Loss function

Artificial Neural Networks Supervised learning, classification, simple perceptron

- 1. Classification as a geometric problem
- 2. Supervised learning
- 3. Gradient descent for a single sigmoidal output unit

Wulfram Gerstner EPFL, Lausanne, Switzerland

$car (no) \\ \hat{y}^7 = 0$ classifier output

Sigmoidal output unit

A saturating nonlinear function with a smooth transition from 0 to 1. $\hat{y}^{\mu} = g(w^T x^{\mu}) = g(\sum_{k=1}^{N+1} w_k x_k^{\mu})$ with $g(a) = \frac{\exp(a)}{1 + \exp(a)} = \frac{1}{1 + \exp(-a)}$ a ()

$\hat{y}^7 = 0.2$ classifier output $f(x^7) = g(w^T x^{\mu})$ Classifier x^7

Supervised learning with sigmoidal output Loss function: define quadratic error $E(w) = \frac{1}{2} \sum_{\mu=1}^{P} \left[t^{\mu} - \hat{y}^{\mu} \right]^{2}$

 $W_{N+1} = \vartheta$

 x_{N+1}

Gradient descent calculation: 'batch' and 'online'

Batch: one update step after all patterns have been applied

Online/Stochastic Gradient Descent (SGD): - one update step after each pattern - one 'epoch' = P patterns have been applied

In both cases, we cycle several times over all patterns

Gradient descent

Quadratic error

Exercise 1 now:

- calculate gradient
- limit to one pattern
- geometric interpretation?

Artificial Neural Networks (Gerstner). Exercises for week Week 1: Simple Perceptrons, Geometric interpretation, Discriminant **1.** Gradient of quadratic error function We define the mean square error in a data base with P patterns as

$$E^{\text{MSE}}(\mathbf{w}) = \frac{1}{2} \frac{1}{P} \sum_{\mu} \left[t^{\mu} - \hat{y} \right]$$

where the output is

$$\hat{y}^{\mu} = g(a^{\mu}) = g(\mathbf{w}^T \mathbf{x}^{\mu}) = g(\sum_k$$

and the input is the pattern \mathbf{x}^{μ} with components $x_1^{\mu} \dots x_N^{\mu}$. (a) Calculate the update of weight w_i by gradient descent (batch rule)

$$\Delta w_j = -\eta \, \frac{dE}{dw_j}$$

Hint: Apply chain rule

(b) Rewrite the formula by taking one pattern at a time (stochastic gradient descent). What is the difference to the batch rule? What is the geometric interpretation? Compare with the perceptron algorithm!

Lecture continues at 14h15

 $[\mu]^2$

 $\left[w_k x_k^{\mu}\right]$

(1)

Exercise 1 now - calculate gradient - apply only 1 pattern - geometry/vector?

(3)

Stochastic gradient descent algorithm (for simple perceptron)

Gradient Descent: Simple Perceptron (in N+1 dimensions)

- set $\gamma = 0.01$ (learning rate; P patterns in total, index μ) - choose M (number of epochs)
- (1) For counter k < P M
 - randomly choose pattern μ
 - calculate output
 - update by $\Delta w = \gamma$

- increase counter $k \leftarrow k+1$ (2a) stop if change during last P patterns was acceptably small (2b) else, decrease γ , reset k to k=1 and return to (1)

 $\hat{y}^{\mu} = g(\boldsymbol{w}^T \boldsymbol{x}^{\mu})$

$$[t^{\mu} - \hat{y}^{\mu}]g'\boldsymbol{x}^{\mu}$$

Artificial Neural Networks Supervised learning, classification, simple perceptron

- 1. Classification as a geometric problem
- 2. Supervised learning
- 3. Gradient Descent for a single sigmoidal unit
- 4. Simple Perceptron (threshold unit)

Wulfram Gerstner EPFL, Lausanne, Switzerland

3. Single-Layer threshold network: simple perceptron

Blackboard 3: Geometry of perceptron: hyperplane

Single-Layer networks: simple perceptron

input vector x

Single-Layer networks: simple perceptron $\hat{y} = 0.5[1 + sgn(\sum_k w_k x_k - \vartheta)]$

vector x

remove threshold: add a constant input

Single-Layer networks: simple perceptron

a simple perceptron

- can only solve linearly separable problems - imposes a separating hyperplane
- for $\vartheta = 0$ hyperplane goes through origin
- threshold parameter ϑ can be removed by adding an input dimension
- in **N+1** dimensions hyperplane always goes through origin
- we can adapt the weight vector to the problem: this is called 'learning'

Artificial Neural Networks Supervised learning, classification, simple perceptron

- 1. Classification as a geometric problem
- 2. Supervised learning
- 3. Gradient descent: Single-layer sigmoidal unit
- 4. Simple Perceptron (threshold unit)
- 5. Perceptron Algorithm

Wulfram Gerstner EPFL, Lausanne, Switzerland

Perceptron algorithm: turn weight vector (in N+1 dim.)

Perceptron algorithm

geometry of perceptron algorithm: turn weight vector $\Delta w \sim x^{\mu}$

- Perceptron algo (in N+1 dimensions):
 - **Set** $\gamma = 0.1$
 - (1) cycle many times through all patterns
 - choose pattern μ
 - calculate output $\hat{\gamma}^{\mu} = 0.5[1 + sgn(w^T x^{\mu})]$
 - update by

$$\Delta \boldsymbol{w} = \gamma [t^{\mu} - \hat{\boldsymbol{y}}^{\mu}] \boldsymbol{x}^{\mu}$$

- iterate $\mu \leftarrow (\mu + 1) mod P$, back to (1) (2) stop if no changes for all *P* patterns

Blackboard 4: geometry of the perceptron algorithm: Turn weight vector

output $\hat{y}^{\mu} = 0.5[1 + sgn(w^{T}x^{\mu})]$ update $\Delta w = \gamma [t^{\mu} - \hat{y}^{\mu}]x^{\mu}$

Perceptron algorithm: theoreom

If the problem is linearly separable, the perceptron algorithm converges in a finite number of steps.

Proof: in many books, e.g., Bishop, 1995, Neural Networks for Pattern Recognition

Summary: Perceptron algorithm

- Perceptron algorithm can solve linearly separable problems
- Cycle several times though all patterns until nothing changes during a full cycle
- Update proportional to weight vector $\Delta w \sim x^{\mu}$
- Proof shows: initial value of *w* not important
 learning rate γ not important
 Reason: length of *w* grows, but only direction matters

Quiz: Perceptron algorithm

The input vector has *N* dimensions and we apply a perceptron algorithm.
[] A change of parameters corresponds always to a rotation of the separating hyperplane in N dimensions.
[] A change of the separating hyperplane implies a rotation of the hyperplane in N+1 dimensions.

In the following change of length means w + Δw = βw i.e., same direction
[] An increase of the length of the weight vector implies an increase of the distance of the hyperplane from the origin in N dimensions.
[] An increase of the length of the weight vector implies that the hyperplane does not change in N dimensions
[] An increase of the length of the weight vector implies that the hyperplane does not change in N dimensions

Compare Perceptron algo / online gradient descent (single layer)

Single unit (in N+1 dimensions), threshold/sigmoidal - set γ (small learning rate; P patterns in total, index μ)

- choose M (number of epochs)
- (1) For counter k < P M
 - randomly choose pattern μ
 - calculate output

- update by $\Delta w = \gamma F$

For both algorithms (perceptron algo/stoch. gradient descent): Mismatch in output \rightarrow rotation of hyperplane (in N+1 dimensions)

$$\hat{y}^{\mu} = g(\boldsymbol{w}^T \boldsymbol{x}^{\mu})$$

$$F[t^{\mu}, \hat{y}^{\mu}] oldsymbol{x}^{\mu}$$

Gradient descent algorithm (stochastic gradient descent) After presentation of pattern x^{μ} update the weight vector by

$$\Delta \boldsymbol{w} = \gamma \delta(\boldsymbol{\mu}) \boldsymbol{x}^{\boldsymbol{\mu}}$$

- amount of change depends on δ(μ), prop. to the (signed) output mismatch for this data point
- change implemented even if 'correctly' classified
- change proportional to x^{μ}
- similar to perceptron algorithm (see next section)

 $\delta(\mu) = \left[t^{\mu} - \hat{y}^{\mu}\right]g'$

Learning outcome and conclusions for today:

- understand classification as a geometrical problem - discriminant function of classification
- linear versus nonlinear discriminant function
- linearly separable problems
- perceptron algorithm
- gradient descent for simple perceptrons - understand learning as a geometric problem

Reading for this week:

- **Bishop**, Ch. 4.1.7 of *Pattern recognition and Machine Learning*
- or **Bishop**, Ch. 3.1-3.5 of *Neural networks for pattern recognition*

Motivational background reading:

Silver et al. 2017, Archive Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

Goodfellow et al., Ch. 1 of

Deep Learning

arning on

