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Anneaux et Corps Exercices
Solutions 2

Exercice 1. (a) 1 ¢ B, therefore B is not a subring of A. On the other hand, B is a bilateral
ideal in A (Definition 1.4.4).

(b) [1] ¢ B, hence B is not a subring of A and, as A is a field, B is neither an ideal in A.

(c) 1 ¢ B, therefore B is not a subring of A. For t € A and > € B we have that t - t* =3 ¢ B,
hence B is not a left ideal in A and moreover, as A is commutative, B is neither a right ideal.

(d) [1] ¢ B, therefore B is not a subring of A. Let f(t) € A and let t?g(t) € B, for some g(t) € A.
Then f(t) - (t2g(t)) = t*(f(t)g(t)) € B and thus B is a left ideal in A. Furthermore, as A is
commutative, B is a bilateral ideal.

(e) BE A.
(f) B¢ A.
(g) [1] ¢ B, therefore B is not a subring of A. Moreover, as B = ([5]), B is a bilateral ideal of A.
(h) B is the set of lower triangular matrices in M, (R), hence it is a subgring of A. If n > 1 then

B is not an ideal of A. if n =1 then B = A and we conclude that B is a bilateral ideal in A.

(i) If n =0 then A = B and thus B is both a subring and a bilateral ideal of A. If n > 0, then
1 ¢ B,hence B is not a subring of A, but, on the other hand, as B = (p™), we have that B is
a bilateral ideal of A.

(j) Iz ¢ B, hence B not a subring. Since

000 a b 0 0 00
0 00 c d 0]=10 0 0] ¢B,
1 00 0 0O a b 0

it follows that B is not a left ideal in A. Similarly, as
a b 0 0 00 0 0 b
c d 0 00 1]=10 0 d]| ¢B,
0 00 0 00 000

I

it follows that B is also not a right ideal in

(k) B is a subring of A: we have that I3 € B, (B, +) is a subgroup of M, (R) and B is stable
under matrix multiplication. As B # A and I3 € B, it follows that B is neither a left nor a
right ideal of A.

(1) Is ¢ B, hence B is not a subring of A. We check to see if B is a left ideal in A. For this let
A = (a;j) € A and we have

aia + apb+ a1z arra+ agb+az. 0
= [ ag1a + as9b + a23c. Q210 + ag9b + ase 0] € B.
azra + azab + asz. azia+ azeb +azz. 0

A
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o o Q
o O O

Therefore B is a left ideal of A. On the other hand, B is not a right ideal as

1 10 0 00 1 00
2 20 1 00]=(2 0 0]¢B.
330 0 00 3 00



(m)

B is not asubring of AasId ¢ B. Let a = ap Id +a;1(12)4a2(13)+a3(23)+a4(123)+a5(132) €
A and let b= A[Id+(12) + (13) + (23) + (123) + (132)] € B. Then

a-b:b-a:)\(ao+a1+a2+(l3+a4+a5)ZQEB
gES3

and we deduce that B is a bilateral ideal of A.

Again, B is not a subring of A, as Id ¢ B. Let a = agId +a1(12)+a2(13) +a3(23) +a4(123) +
a5(132) € A and let b = AId —A(12) — A(13) — A(23) + A(123) + A(132) € B. One checks that
a-b=MNap—a; —ay —az+as+as)Id—XAag —a; —ag —as + aq + a5)(12)—
—Map —a; —ag —az +aq + a5)(13) — Mag — a1 — ag — a3 + a4 + a5)(23)+
+ ANag — a1 —ag —az + aq + a5)(123) + Aag — a1 — ag — ag + aq4 + a5)(132)

= > (g,

gESs

where = A ag — a1 — ag — ag + a4 + a5) € C. Therefore B is a left ideal of A. Analogously,

one shows that:
b-a= Z (—1)%29) . g,
geSs

where p = A ag — a1 — ag — az + a4 + a5) € C, and therefore B is a bilateral ideal of A.
Again, B is not a subring of A, as Id ¢ B. Let a = agld +a1(12) + a2(13) + a3(23) +
a4(123) 4+ a5(132) € A and let b = AId +Xe(123) 4+ Ae2(132) + p(12) + pe(23) + pe?(13) € B.
We compute:
a-b= (Aag+ paj + uazag + peas + \e2ay + Aeas) Id +(Aeag + peay + pag + ,u52a3 + Aag+
+ Ae%a5)(123) + (A\e?ag + peay + peag + paz + Aeayg + Aas)(132) + (pao + Aag+
+ Xeas + a3 + peaq + u52a5)(12) + (peag + Aeay + \e2ag + Aag + pelaq + uas)(23)+
+ (peag + Ae®ay + Aag + Aeag + pag + peas)(13)

Set & = Aag+pai+peas+peaz+Ae?as+Aeas and y = pag+Aai+Aeas+Ae2az+peas+peas.
Then, z,y € C and we see that

a-b=xld+re(123) + 22(132) + y(12) + ye(23) + ye*(13) € B

and conclude that B is a left ideal of A.

On the other hand, let a = agId +a;(12) € A and b = A1d +Xe(123) + A\e?(132) + p(12) +
pe(23) + pue?(13) € B. Then:

b-a= (Aag 4 par) Id +e(Xag + pear)(123) 4+ e2(Mag + pea1)(132) + (pag + rar)(12)+
+ e(pag + Aeap)(23) + €2 (pap + Ae?ay)(13) ¢ B.
Hence B is not a right ideal of A.
Once more, B is not a subring of A, as Id ¢ B. One checks that:

(12) - [A(123) + A(132)] = A(23) + A\(13) ¢ B
IA(123) + A(132)] - (12) = A(13) + \(23) ¢ B

I

A
A

hence B is neither a left, nor a right ideal of A.



Exercice 2. 1. Let A = (a;;) € M,(K) be a matrix which is concentrated in the j* column,

ie. aps =0 forall s # j. For all 1 <7 < n consider the matrix B, = a,je,; € My, (K). Then
Be;j € I, where

n n . .
ari, if k=r and [ = j
(Breij)m = mz:l(arjeri)km(eij)ml = Gyrj mZ:l 0rk0im0j1 = arjOrdj = {Ojjotherwise

n
Lastly, as A = Z(Breij), we conclude that A € I.

r=1

. Let S C M, (K) be the subset of matrices which are concentrated in the j** column. Clearly,

S is an additive subgroup of M, (K). Now, let A = (a,s) € M,(K) and let B = (b,s) € S.
As

(A : B)rs = i armbm57

m=1

it follows that (A - B),s = 0 for all s # j, and we deduce that A - B € S. Therefore, S is a
left ideal in M, (K).

. Let {0} # I be a bilateral ideal in M, (K). Let A be a non-zero matrix in I. Then A admits

a non-zero coefficient a;;. As I is an ideal and K is a field we have that % I,-A € I and so,
we can assume without loss of generality that a;; = 1. Since [ is a bilateral ideal, it follows
that for all 1 <7, s <n, the product e,;Aej; € I. We compute

n n n

(em’Aejs)kl = Z(eriA)kq(ejs)ql = Z [Z(eri)kpapq] 5jq531 = Z(Srkéipapjésl
p=1

q=1 g=1 p=1
= 0,50ij0s1 = Or0s) = (€rs)ki

and it follows that e,s € I for all 1 <r, s < n. Lastly, as I is an additive subgroup of M, (K),
we conclude that I = M, (K).

Exercice 3. (a) Let 0 # x € I and let 0 # y € J. Then zy # 0, as A is integral, and xy € I N J;

(b)
(©)
(d)

Proposition 1.4.6;
Exercice 2;

Proposition 1.4.6.

Exercice 4. (a) Example 1.4.9;

(b)

Recall the quotient homomorphism & : A — A/I given by a 4 [a] (Proposition 1.4.13). This
induces the surjective ring homomorphism f : My,(A) — My(A/I) given by (a;;) AN ([aij])-
The kernel of f consists of those matrices in M,,(A) whose coefficients are zero in A/I, hence
ker(f) = M, (I). We conclude that M, (A)/M,(I) = M,(A/I).

Let ¢ : Z — Z[V7]/I, where ¢(n) = [n], for all n € Z. Clearly, ¢ is a ring homomorphism
and ker(p) = {n € Z | n € I}. Let n € ker(y¢). Then there exist a,b € Z such that
n = (5+2v/7)(a+by/7). We make the computations and arrive at 2n = 3b. As ged(2,3) = 1,
we have n € (3), hence ker(yp) C (3). Conversely, let n € (3). Then n = 3m, for some m € Z,
and ¢(n) = ¢(3)p(m) = 0. We deduce that ker(y) = (3).



The only thing left to prove is that ¢ is surjective. Before we proceed, we remark that
VT(5 +2V7) = 14 +5V7 € T and (14 + 5V7) — 2(5 + 2V7) = 4 + /7 € I. Now, let
[a + bV/7] € Z[V/7]/I. We have that

[a+bV/7] = [a] + [bV7T] = [a] + [—4b] = ¢(a) + p(—4b) = @(a — 4b).

We use the isomorphism theorem to conclude that Z/(3) = Z[v/7]/(5 + 2v/7).

Exercice 5.
We recall that, by convention, the degree of the zero polynomial is —oo and that —oo +n = —o0

m
for all positive integers n. We can therefore assume that f,g # 0. We write f(t) = Zaiti,
=0

where a,, # 0, hence deg(f) = m, and g(t) = ijtj, where b, # 0, hence deg(g) = n. Now

§=0
fg(t) = Z Z aibjti“ and so deg(fg) = n+ m, as the leading coefficient of fg is a,b, # 0, by
i=0 j=0

integrity of A.

Exercice 6.
Consider the evaluation homomorphism ev, : Z[t] — Ze]. Clearly ev. is surjective and so, the only
thing we need to show is that (t2 +t + 1) = ker(ev,).

Let f(t) € (2 +t+1). Then f(t) = (t> +t + 1)g(t) for some g(t) € Z[t] and we have

eve(f(t)) = eve(t* +t + 1) eve(g(t)) = 0.

Therefore (12 +t + 1) C ker(eve).
Conversely, let f(t) € ker(ev.). We will show that f(t) € (t> +t + 1) by recurrence on deg(f).
If deg(f) =0, then f(t) = ap and as ev.(f) =0, it follows that f = 0.
If deg(f) = 1, then f(t) = ait + ap, for some ay,ag € Z, and, as ev.(f(t)) = 0, it follows that
a; = ap = 0, hence f(t) = 0.

We can now assume that deg(f) > 2. We write f(t) = Zaiti, where deg(f) = m and a; € Z.
i=0
Then, as f(t) € ker(ev.) and a,,t™ 2(t> +t + 1) € ker(ev.), it follows that:
m—3 '
g(t) = f(t) = amt™ (P +t+1) = D ait’ + (am—2 — am)t™ % + (am-1 — am)t™ " € ker(eve).
i=0

Now deg(g(t)) < m — 1 and so, by recurrence, we have g(t) € (t* +t + 1). Consequently, f(t) =
g(t) +amt™ 22+t +1) € (2 +t+ 1) and so ker(ev.) = (2 + ¢+ 1).
We now apply the isomorphism theorem to conclude that Z[t]/(t? +t + 1) = Z[¢].



