Exercice 1. (a) $1 \notin B$, therefore B is not a subring of A. On the other hand, B is a bilateral ideal in A (Definition 1.4.4).
(b) $[1] \notin B$, hence B is not a subring of A and, as A is a field, B is neither an ideal in A.
(c) $1 \notin B$, therefore B is not a subring of A. For $t \in A$ and $t^{2} \in B$ we have that $t \cdot t^{2}=t^{3} \notin B$, hence B is not a left ideal in A and moreover, as A is commutative, B is neither a right ideal.
(d) $[1] \notin B$, therefore B is not a subring of A. Let $f(t) \in A$ and let $t^{2} g(t) \in B$, for some $g(t) \in A$. Then $f(t) \cdot\left(t^{2} g(t)\right)=t^{2}(f(t) g(t)) \in B$ and thus B is a left ideal in A. Furthermore, as A is commutative, B is a bilateral ideal.
(e) $B \nsubseteq A$.
(f) $B \nsubseteq A$.
(g) $[1] \notin B$, therefore B is not a subring of A. Moreover, as $B=([5]), B$ is a bilateral ideal of A.
(h) B is the set of lower triangular matrices in $M_{n}(\mathbb{R})$, hence it is a subgring of A. If $n>1$ then B is not an ideal of A. if $n=1$ then $B=A$ and we conclude that B is a bilateral ideal in A.
(i) If $n=0$ then $A=B$ and thus B is both a subring and a bilateral ideal of A. If $n>0$, then $1 \notin B$, hence B is not a subring of A, but, on the other hand, as $B=\left(p^{n}\right)$, we have that B is a bilateral ideal of A.
(j) $\mathrm{I}_{3} \notin B$, hence B not a subring. Since

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
a & b & 0
\end{array}\right) \notin B,
$$

it follows that B is not a left ideal in A. Similarly, as

$$
\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & d \\
0 & 0 & 0
\end{array}\right) \notin B,
$$

it follows that B is also not a right ideal in A.
(k) B is a subring of A : we have that $\mathrm{I}_{3} \in B,(B,+)$ is a subgroup of $M_{n}(\mathbb{R})$ and B is stable under matrix multiplication. As $B \neq A$ and $\mathrm{I}_{3} \in B$, it follows that B is neither a left nor a right ideal of A.
(l) $\mathrm{I}_{3} \notin B$, hence B is not a subring of A. We check to see if B is a left ideal in A. For this let $A=\left(a_{i j}\right) \in A$ and we have

$$
A\left(\begin{array}{lll}
a & a & 0 \\
b & b & 0 \\
c & c & 0
\end{array}\right)=\left(\begin{array}{lll}
a_{11} a+a_{12} b+a_{13 c} & a_{11} a+a_{12} b+a_{13 c} & 0 \\
a_{21} a+a_{22} b+a_{23 c} & a_{21} a+a_{22} b+a_{23 c} & 0 \\
a_{31} a+a_{32} b+a_{33 c} & a_{31} a+a_{32} b+a_{33 c} & 0
\end{array}\right) \in B .
$$

Therefore B is a left ideal of A. On the other hand, B is not a right ideal as

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 2 & 0 \\
3 & 3 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 0 & 0 \\
3 & 0 & 0
\end{array}\right) \notin B .
$$

(m) B is not a subring of A as $\mathrm{Id} \notin B$. Let $a=a_{0} \mathrm{Id}+a_{1}(12)+a_{2}(13)+a_{3}(23)+a_{4}(123)+a_{5}(132) \in$ A and let $b=\lambda[\operatorname{Id}+(12)+(13)+(23)+(123)+(132)] \in B$. Then

$$
a \cdot b=b \cdot a=\lambda\left(a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}\right) \sum_{g \in S_{3}} g \in B
$$

and we deduce that B is a bilateral ideal of A.
(n) Again, B is not a subring of A, as Id $\notin B$. Let $a=a_{0} \operatorname{Id}+a_{1}(12)+a_{2}(13)+a_{3}(23)+a_{4}(123)+$ $a_{5}(132) \in A$ and let $b=\lambda \operatorname{Id}-\lambda(12)-\lambda(13)-\lambda(23)+\lambda(123)+\lambda(132) \in B$. One checks that

$$
\begin{aligned}
a \cdot b= & \lambda\left(a_{0}-a_{1}-a_{2}-a_{3}+a_{4}+a_{5}\right) \operatorname{Id}-\lambda\left(a_{0}-a_{1}-a_{2}-a_{3}+a_{4}+a_{5}\right)(12)- \\
& -\lambda\left(a_{0}-a_{1}-a_{2}-a_{3}+a_{4}+a_{5}\right)(13)-\lambda\left(a_{0}-a_{1}-a_{2}-a_{3}+a_{4}+a_{5}\right)(23)+ \\
& +\lambda\left(a_{0}-a_{1}-a_{2}-a_{3}+a_{4}+a_{5}\right)(123)+\lambda\left(a_{0}-a_{1}-a_{2}-a_{3}+a_{4}+a_{5}\right)(132) \\
= & \sum_{g \in S_{3}}(-1)^{\operatorname{sgn}(g)} \mu \cdot g,
\end{aligned}
$$

where $\mu=\lambda\left(a_{0}-a_{1}-a_{2}-a_{3}+a_{4}+a_{5}\right) \in \mathbb{C}$. Therefore B is a left ideal of A. Analogously, one shows that:

$$
b \cdot a=\sum_{g \in S_{3}}(-1)^{\operatorname{sgn}(g)} \mu \cdot g
$$

where $\mu=\lambda\left(a_{0}-a_{1}-a_{2}-a_{3}+a_{4}+a_{5}\right) \in \mathbb{C}$, and therefore B is a bilateral ideal of A.
(o) Again, B is not a subring of A, as Id $\notin B$. Let $a=a_{0} \operatorname{Id}+a_{1}(12)+a_{2}(13)+a_{3}(23)+$ $a_{4}(123)+a_{5}(132) \in A$ and let $b=\lambda \operatorname{Id}+\lambda \varepsilon(123)+\lambda \varepsilon^{2}(132)+\mu(12)+\mu \varepsilon(23)+\mu \varepsilon^{2}(13) \in B$. We compute:

$$
\begin{aligned}
a \cdot b & =\left(\lambda a_{0}+\mu a_{1}+\mu \varepsilon^{2} a_{2}+\mu \varepsilon a_{3}+\lambda \varepsilon^{2} a_{4}+\lambda \varepsilon a_{5}\right) \operatorname{Id}+\left(\lambda \varepsilon a_{0}+\mu \varepsilon a_{1}+\mu a_{2}+\mu \varepsilon^{2} a_{3}+\lambda a_{4}+\right. \\
& \left.+\lambda \varepsilon^{2} a_{5}\right)(123)+\left(\lambda \varepsilon^{2} a_{0}+\mu \varepsilon^{2} a_{1}+\mu \varepsilon a_{2}+\mu a_{3}+\lambda \varepsilon a_{4}+\lambda a_{5}\right)(132)+\left(\mu a_{0}+\lambda a_{1}+\right. \\
& \left.+\lambda \varepsilon a_{2}+\lambda \varepsilon^{2} a_{3}+\mu \varepsilon a_{4}+\mu \varepsilon^{2} a_{5}\right)(12)+\left(\mu \varepsilon a_{0}+\lambda \varepsilon a_{1}+\lambda \varepsilon^{2} a_{2}+\lambda a_{3}+\mu \varepsilon^{2} a_{4}+\mu a_{5}\right)(23)+ \\
& +\left(\mu \varepsilon^{2} a_{0}+\lambda \varepsilon^{2} a_{1}+\lambda a_{2}+\lambda \varepsilon a_{3}+\mu a_{4}+\mu \varepsilon a_{5}\right)(13)
\end{aligned}
$$

Set $x=\lambda a_{0}+\mu a_{1}+\mu \varepsilon^{2} a_{2}+\mu \varepsilon a_{3}+\lambda \varepsilon^{2} a_{4}+\lambda \varepsilon a_{5}$ and $y=\mu a_{0}+\lambda a_{1}+\lambda \varepsilon a_{2}+\lambda \varepsilon^{2} a_{3}+\mu \varepsilon a_{4}+\mu \varepsilon^{2} a_{5}$. Then, $x, y \in \mathbb{C}$ and we see that

$$
a \cdot b=x \operatorname{Id}+x \varepsilon(123)+x \varepsilon^{2}(132)+y(12)+y \varepsilon(23)+y \varepsilon^{2}(13) \in B
$$

and conclude that B is a left ideal of A.
On the other hand, let $a=a_{0} \operatorname{Id}+a_{1}(12) \in A$ and $b=\lambda \operatorname{Id}+\lambda \varepsilon(123)+\lambda \varepsilon^{2}(132)+\mu(12)+$ $\mu \varepsilon(23)+\mu \varepsilon^{2}(13) \in B$. Then:

$$
\begin{aligned}
b \cdot a= & \left(\lambda a_{0}+\mu a_{1}\right) \operatorname{Id}+\varepsilon\left(\lambda a_{0}+\mu \varepsilon a_{1}\right)(123)+\varepsilon^{2}\left(\lambda a_{0}+\mu \varepsilon^{2} a_{1}\right)(132)+\left(\mu a_{0}+\lambda a_{1}\right)(12)+ \\
& +\varepsilon\left(\mu a_{0}+\lambda \varepsilon a_{1}\right)(23)+\varepsilon^{2}\left(\mu a_{0}+\lambda \varepsilon^{2} a_{1}\right)(13) \notin B .
\end{aligned}
$$

Hence B is not a right ideal of A.
(p) Once more, B is not a subring of A, as $\operatorname{Id} \notin B$. One checks that:

$$
\left\{\begin{array}{l}
(12) \cdot[\lambda(123)+\lambda(132)]=\lambda(23)+\lambda(13) \notin B \\
{[\lambda(123)+\lambda(132)] \cdot(12)=\lambda(13)+\lambda(23) \notin B}
\end{array}\right.
$$

hence B is neither a left, nor a right ideal of A.

Exercice 2. 1. Let $A=\left(a_{i j}\right) \in M_{n}(K)$ be a matrix which is concentrated in the $j^{\text {th }}$ column, i.e. $a_{r s}=0$ for all $s \neq j$. For all $1 \leq r \leq n$ consider the matrix $B_{r}=a_{r j} e_{r i} \in M_{n}(K)$. Then $B_{r} e_{i j} \in I$, where

$$
\left(B_{r} e_{i j}\right)_{k l}=\sum_{m=1}^{n}\left(a_{r j} e_{r i}\right)_{k m}\left(e_{i j}\right)_{m l}=a_{r j} \sum_{m=1}^{n} \delta_{r k} \delta_{i m} \delta_{j l}=a_{r j} \delta_{r k} \delta_{j l}=\left\{\begin{array}{l}
a_{r j}, \text { if } k=r \text { and } l=j \\
0, \text { otherwise }
\end{array} .\right.
$$

Lastly, as $A=\sum_{r=1}^{n}\left(B_{r} e_{i j}\right)$, we conclude that $A \in I$.
2. Let $S \subseteq M_{n}(K)$ be the subset of matrices which are concentrated in the $j^{\text {th }}$ column. Clearly, S is an additive subgroup of $M_{n}(K)$. Now, let $A=\left(a_{r s}\right) \in M_{n}(K)$ and let $B=\left(b_{r s}\right) \in S$. As

$$
(A \cdot B)_{r s}=\sum_{m=1}^{n} a_{r m} b_{m s}
$$

it follows that $(A \cdot B)_{r s}=0$ for all $s \neq j$, and we deduce that $A \cdot B \in S$. Therefore, S is a left ideal in $M_{n}(K)$.
3. Let $\{0\} \neq I$ be a bilateral ideal in $M_{n}(K)$. Let A be a non-zero matrix in I. Then A admits a non-zero coefficient $a_{i j}$. As I is an ideal and K is a field we have that $\frac{1}{a_{i j}} \mathrm{I}_{n} \cdot A \in I$ and so, we can assume without loss of generality that $a_{i j}=1$. Since I is a bilateral ideal, it follows that for all $1 \leq r, s \leq n$, the product $e_{r i} A e_{j s} \in I$. We compute

$$
\begin{aligned}
\left(e_{r i} A e_{j s}\right)_{k l} & =\sum_{q=1}^{n}\left(e_{r i} A\right)_{k q}\left(e_{j s}\right)_{q l}=\sum_{q=1}^{n}\left[\sum_{p=1}^{n}\left(e_{r i}\right)_{k p} a_{p q}\right] \delta_{j q} \delta_{s l}=\sum_{p=1}^{n} \delta_{r k} \delta_{i p} a_{p j} \delta_{s l} \\
& =\delta_{r k} a_{i j} \delta_{s l}=\delta_{r k} \delta_{s l}=\left(e_{r s}\right)_{k l}
\end{aligned}
$$

and it follows that $e_{r s} \in I$ for all $1 \leq r, s \leq n$. Lastly, as I is an additive subgroup of $M_{n}(K)$, we conclude that $I=M_{n}(K)$.

Exercice 3. (a) Let $0 \neq x \in I$ and let $0 \neq y \in J$. Then $x y \neq 0$, as A is integral, and $x y \in I \cap J$;
(b) Proposition 1.4.6;
(c) Exercice 2;
(d) Proposition 1.4.6.

Exercice 4. (a) Example 1.4.9;
(b) Recall the quotient homomorphism $\xi: A \rightarrow A / I$ given by $a \xrightarrow{\xi}[a]$ (Proposition 1.4.13). This induces the surjective ring homomorphism $f: M_{n}(A) \rightarrow M_{n}(A / I)$ given by $\left(a_{i j}\right) \xrightarrow{\mathrm{f}}\left(\left[a_{i j}\right]\right)$. The kernel of f consists of those matrices in $M_{n}(A)$ whose coefficients are zero in A / I, hence $\operatorname{ker}(f)=M_{n}(I)$. We conclude that $M_{n}(A) / M_{n}(I) \cong M_{n}(A / I)$.
(c) Let $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}[\sqrt{7}] / I$, where $\varphi(n)=[n]$, for all $n \in \mathbb{Z}$. Clearly, φ is a ring homomorphism and $\operatorname{ker}(\varphi)=\{n \in \mathbb{Z} \mid n \in I\}$. Let $n \in \operatorname{ker}(\varphi)$. Then there exist $a, b \in \mathbb{Z}$ such that $n=(5+2 \sqrt{7})(a+b \sqrt{7})$. We make the computations and arrive at $2 n=3 b$. As $\operatorname{gcd}(2,3)=1$, we have $n \in(3)$, hence $\operatorname{ker}(\varphi) \subseteq(3)$. Conversely, let $n \in(3)$. Then $n=3 m$, for some $m \in \mathbb{Z}$, and $\varphi(n)=\varphi(3) \varphi(m)=0$. We deduce that $\operatorname{ker}(\varphi)=(3)$.

The only thing left to prove is that φ is surjective. Before we proceed, we remark that $\sqrt{7}(5+2 \sqrt{7})=14+5 \sqrt{7} \in I$ and $(14+5 \sqrt{7})-2(5+2 \sqrt{7})=4+\sqrt{7} \in I$. Now, let $[a+b \sqrt{7}] \in \mathbb{Z}[\sqrt{7}] / I$. We have that

$$
[a+b \sqrt{7}]=[a]+[b \sqrt{7}]=[a]+[-4 b]=\varphi(a)+\varphi(-4 b)=\varphi(a-4 b)
$$

We use the isomorphism theorem to conclude that $\mathbb{Z} /(3) \cong \mathbb{Z}[\sqrt{7}] /(5+2 \sqrt{7})$.

Exercice 5.

We recall that, by convention, the degree of the zero polynomial is $-\infty$ and that $-\infty+n=-\infty$ for all positive integers n. We can therefore assume that $f, g \neq 0$. We write $f(t)=\sum_{i=0}^{m} a_{i} t^{i}$, where $a_{m} \neq 0$, hence $\operatorname{deg}(f)=m$, and $g(t)=\sum_{j=0}^{n} b_{j} t^{j}$, where $b_{n} \neq 0$, hence $\operatorname{deg}(g)=n$. Now $f(t) g(t)=\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i} b_{j} t^{i+j}$ and so $\operatorname{deg}(f g)=n+m$, as the leading coefficient of $f g$ is $a_{m} b_{n} \neq 0$, by integrity of A.

Exercice 6.

Consider the evaluation homomorphism $\mathrm{ev}_{\varepsilon}: \mathbb{Z}[t] \rightarrow \mathbb{Z}[\varepsilon]$. Clearly $\mathrm{ev}_{\varepsilon}$ is surjective and so, the only thing we need to show is that $\left(t^{2}+t+1\right)=\operatorname{ker}\left(\mathrm{ev}_{\varepsilon}\right)$.

Let $f(t) \in\left(t^{2}+t+1\right)$. Then $f(t)=\left(t^{2}+t+1\right) g(t)$ for some $g(t) \in \mathbb{Z}[t]$ and we have

$$
\operatorname{ev}_{\varepsilon}(f(t))=\operatorname{ev}_{\varepsilon}\left(t^{2}+t+1\right) \operatorname{ev}_{\varepsilon}(g(t))=0
$$

Therefore $\left(t^{2}+t+1\right) \subseteq \operatorname{ker}\left(\mathrm{ev}_{\varepsilon}\right)$.
Conversely, let $f(t) \in \operatorname{ker}\left(\mathrm{ev}_{\varepsilon}\right)$. We will show that $f(t) \in\left(t^{2}+t+1\right)$ by recurrence on $\operatorname{deg}(f)$.
If $\operatorname{deg}(f)=0$, then $f(t)=a_{0}$ and as $\operatorname{ev}_{\varepsilon}(f)=0$, it follows that $f=0$.
If $\operatorname{deg}(f)=1$, then $f(t)=a_{1} t+a_{0}$, for some $a_{1}, a_{0} \in \mathbb{Z}$, and, as $\operatorname{ev}_{\varepsilon}(f(t))=0$, it follows that $a_{1}=a_{0}=0$, hence $f(t)=0$.

We can now assume that $\operatorname{deg}(f) \geq 2$. We write $f(t)=\sum_{i=0}^{m} a_{i} t^{i}$, where $\operatorname{deg}(f)=m$ and $a_{i} \in \mathbb{Z}$. Then, as $f(t) \in \operatorname{ker}\left(\mathrm{ev}_{\varepsilon}\right)$ and $a_{m} t^{m-2}\left(t^{2}+t+1\right) \in \operatorname{ker}\left(\mathrm{ev}_{\varepsilon}\right)$, it follows that:

$$
g(t)=f(t)-a_{m} t^{m-2}\left(t^{2}+t+1\right)=\sum_{i=0}^{m-3} a_{i} t^{i}+\left(a_{m-2}-a_{m}\right) t^{m-2}+\left(a_{m-1}-a_{m}\right) t^{m-1} \in \operatorname{ker}\left(\mathrm{ev}_{\varepsilon}\right)
$$

Now $\operatorname{deg}(g(t)) \leq m-1$ and so, by recurrence, we have $g(t) \in\left(t^{2}+t+1\right)$. Consequently, $f(t)=$ $g(t)+a_{m} t^{m-2}\left(t^{2}+t+1\right) \in\left(t^{2}+t+1\right)$ and so $\operatorname{ker}\left(\mathrm{ev}_{\varepsilon}\right)=\left(t^{2}+t+1\right)$.

We now apply the isomorphism theorem to conclude that $\mathbb{Z}[t] /\left(t^{2}+t+1\right) \cong \mathbb{Z}[\varepsilon]$.

