1 Exercice Bonus 1

Exercice 7. 1. $\nu(1)=\nu(1 \cdot 1)=\nu(1)+\nu(1)$. Therefore $\nu(1)=0$. The case of -1 follows from this by $\nu(1)=\nu(-1 \cdot-1)=\nu(-1)+\nu(-1)$.
2. We need to prove that R_{ν} is table under addition and multiplication and that the neutral element 1 and the zero element 0 belong to R_{ν}.
a) From point 1 . we have that $1 \in R_{\nu}$.
b) Note that $0 \in R_{\nu}$ by definition of R_{ν}.
c) Let $x, y \in R_{\nu}$, then $\nu(x \cdot y)=\nu(x)+\nu(y) \geq 0$. Therefore $x \cdot y \in R_{\nu}$.
d) Let $x, y \in R_{\nu}$, then $\nu(x+y) \geq \min (\nu(x), \nu(y)) \geq 0$. Therefore $x+y \in R_{\nu}$.
3. We know from the previous point that R_{ν} is a subring of K. We will prove that for all $x \in K$ either $x \in K$ or $x^{-1} \in K$. This will prove that K is the fraction field of R_{ν}. From point 1 . we have that

$$
0=\nu(1)=\nu\left(x \cdot x^{-1}\right)=\nu(x)+\nu\left(x^{-1}\right) .
$$

Thus $\nu(x)=-\nu\left(x^{-1}\right)$. It follows that either $\nu(x) \in R_{\nu}$ or $\nu\left(x^{-1}\right) \in R_{\nu}$.
4. From now on we will consider $K=\mathbb{Q}$. We want to prove that if $x \in \mathbb{Z}$ then $\nu(x) \geq 0$. Using point 1 . we have that $\nu(1+\ldots+1) \geq \min (\nu(1), \ldots, \nu(1))=0$. The case of negative numbers is similar.
5. Suppose that $\nu(p)=0$ for all primes p, then ν is trivial. Then for every $x \in \mathbb{Z}$ we consider it prime factorization $z=p_{1}^{j_{1}} p_{2}^{j_{2}} \cdot p_{n}^{j_{n}}$ where p_{i} are prime and $j_{i} \in \mathbb{N}$. Then using iteratevly condition a. in the definition of valuation function we first note that $\nu\left(p_{i}^{n_{i}}\right)=0$ for every $i \in 1 \ldots n$. Again using condition a. we can conclude that $\nu(z)=0$. Therefore ν is trivial.
6. Now we want to prove that if ν is non-trivial, then $\nu(p) \neq 0$ can happen for at most one (positive) prime p. Let p and q are two distinct such primes, then by the Euclidean algorithm we can write $1=a p+b q$ for a and b integers. Suppose by contradiction that both $\nu(p) \geq 0$ and $\nu(q) \geq)$. Then by condition a. and b. above we have

$$
0=\nu(1)=\nu(a p+b q) \geq \min (\nu(a p), \nu(b q)) .
$$

Suppose without loss of generality that $0 \geq \nu(a p)=\nu(a)+\nu(p)$. We know by point 4 . that $\nu(a) \geq 0$ and $\nu(p) \geq 0$. Then we have necessarily that $\nu(p)=0$ and $\nu(a)=0$. Therefore we proved our statement by contradiction.
7. Let ν a non-trivial valuation function such that $\nu(p) \neq 0$ for a prime p. We know that $\nu\left(p^{i}\right) \geq 0$ by condition a.. The for every $x \in \mathbb{Q}$ we can write $x=p^{i} \frac{a}{b}$, where a and b coprime with p. Then we have that

$$
\nu\left(p^{i} \frac{a}{b}\right)=\nu\left(p^{i}\right)+\nu\left(\frac{a}{b}\right)=\nu\left(p^{i}\right)=\nu(p)+\nu(p)+\cdots+\nu(p)=i \cdot c,
$$

where the last equality is given by the fact that $\nu(p)$ is summed i-times and we defined $c:=\nu(p)$.
It is not difficult to prove that

$$
\nu\left(p^{i} \frac{a}{b}\right)=i \cdot c,
$$

is a valuation function. Where $\nu(p) \geq 0, a, b$ prime with p and c is an integer. In fact we have that for every $x, y \in \mathbb{Z}$ such that $x=p^{i} \frac{a}{b}$ and $y=p^{j} \frac{c}{d}$, with a, b, c, d prime with p :
a. $\nu(x y)=\nu\left(p^{i+j} \frac{a}{b} \frac{c}{d}\right)=(i+j) c=\nu(x)+\nu(y)$.
b. One can show that $\nu(x+y) \geq k \cdot c$ where $k=\geq \min (i, j)$ by taking a prime decomposition of the sum $x+y$ and noticing that at least the the minimum between p^{i} or p^{j} has to appear in this factorization.
8. The above valuation function is called the p-adic valuation for $c=1$, which we denote by ν_{p}. We want to show that the valuation ring on $R_{\nu_{p}}$ is not equal to $\mathbb{Z} \subset \mathbb{Q}$. One can see that $\nu_{p}\left(p^{i} / q\right) \geq 0$ for every prime q other than p, therefore $R_{\nu_{p}}$ is not equal to $\mathbb{Z} \subset \mathbb{Q}$.
Note that with proving all the points above we exhibited \mathbb{Q} as the fraction field of many subrings other than \mathbb{Z} built as the evaluation $R_{\nu_{p}}$ for some prime p.

