1 Exercice Bonus 1

- **Exercice 7.** 1. $\nu(1) = \nu(1 \cdot 1) = \nu(1) + \nu(1)$. Therefore $\nu(1) = 0$. The case of -1 follows from this by $\nu(1) = \nu(-1 \cdot -1) = \nu(-1) + \nu(-1)$.
 - 2. We need to prove that R_{ν} is table under addition and multiplication and that the neutral element 1 and the zero element 0 belong to R_{ν} .
 - a) From point 1. we have that $1 \in R_{\nu}$.
 - b) Note that $0 \in R_{\nu}$ by definition of R_{ν} .
 - c) Let $x, y \in R_{\nu}$, then $\nu(x \cdot y) = \nu(x) + \nu(y) \ge 0$. Therefore $x \cdot y \in R_{\nu}$.
 - d) Let $x, y \in R_{\nu}$, then $\nu(x+y) \ge \min(\nu(x), \nu(y)) \ge 0$. Therefore $x+y \in R_{\nu}$.
 - 3. We know from the previous point that R_{ν} is a subring of K. We will prove that for all $x \in K$ either $x \in K$ or $x^{-1} \in K$. This will prove that K is the fraction field of R_{ν} . From point 1. we have that

$$0 = \nu(1) = \nu(x \cdot x^{-1}) = \nu(x) + \nu(x^{-1}).$$

Thus $\nu(x) = -\nu(x^{-1})$. It follows that either $\nu(x) \in R_{\nu}$ or $\nu(x^{-1}) \in R_{\nu}$.

- 4. From now on we will consider $K = \mathbb{Q}$. We want to prove that if $x \in \mathbb{Z}$ then $\nu(x) \ge 0$. Using point 1. we have that $\nu(1 + ... + 1) \ge \min(\nu(1), ..., \nu(1)) = 0$. The case of negative numbers is similar.
- 5. Suppose that $\nu(p) = 0$ for all primes p, then ν is trivial. Then for every $x \in \mathbb{Z}$ we consider it prime factorization $z = p_1^{j_1} p_2^{j_2} \cdot p_n^{j_n}$ where p_i are prime and $j_i \in \mathbb{N}$. Then using iteratevely condition a. in the definition of valuation function we first note that $\nu(p_i^{n_i}) = 0$ for every $i \in 1 \dots n$. Again using condition a, we can conclude that $\nu(z) = 0$. Therefore ν is trivial.
- 6. Now we want to prove that if ν is non-trivial, then $\nu(p) \neq 0$ can happen for at most one (positive) prime p. Let p and q are two distinct such primes, then by the Euclidean algorithm we can write 1 = ap + bq for a and b integers. Suppose by contradiction that both $\nu(p) \geq 0$ and $\nu(q) \geq$). Then by condition a. and b. above we have

$$0 = \nu(1) = \nu(ap + bq) \ge \min(\nu(ap), \nu(bq))$$

Suppose without loss of generality that $0 \ge \nu(ap) = \nu(a) + \nu(p)$. We know by point 4. that $\nu(a) \ge 0$ and $\nu(p) \ge 0$. Then we have necessarily that $\nu(p) = 0$ and $\nu(a) = 0$. Therefore we proved our statement by contradiction.

7. Let ν a non-trivial valuation function such that $\nu(p) \neq 0$ for a prime p. We know that $\nu(p^i) \geq 0$ by condition a. The for every $x \in \mathbb{Q}$ we can write $x = p^i \frac{a}{b}$, where a and b coprime with p. Then we have that

$$\nu(p^{i}\frac{a}{b}) = \nu(p^{i}) + \nu(\frac{a}{b}) = \nu(p^{i}) = \nu(p) + \nu(p) + \dots + \nu(p) = i \cdot c,$$

where the last equality is given by the fact that $\nu(p)$ is summed *i*-times and we defined $c := \nu(p)$.

It is not difficult to prove that

$$\nu(p^i \frac{a}{b}) = i \cdot c,$$

is a valuation function. Where $\nu(p) \ge 0$, a, b prime with p and c is an integer. In fact we have that for every $x, y \in \mathbb{Z}$ such that $x = p^i \frac{a}{b}$ and $y = p^j \frac{c}{d}$, with a, b, c, d prime with p:

- a. $\nu(xy) = \nu(p^{i+j} \frac{a}{b} \frac{c}{d}) = (i+j)c = \nu(x) + \nu(y).$
- b. One can show that $\nu(x+y) \ge k \cdot c$ where $k \ge \min(i, j)$ by taking a prime decomposition of the sum x + y and noticing that at least the the minimum between p^i or p^j has to appear in this factorization.
- 8. The above valuation function is called the *p*-adic valuation for c = 1, which we denote by ν_p . We want to show that the valuation ring on R_{ν_p} is not equal to $\mathbb{Z} \subset \mathbb{Q}$. One can see that $\nu_p(p^i/q) \geq 0$ for every prime *q* other than *p*, therefore R_{ν_p} is not equal to $\mathbb{Z} \subset \mathbb{Q}$.

Note that with proving all the points above we exhibited \mathbb{Q} as the fraction field of many subrings other than \mathbb{Z} built as the evaluation R_{ν_p} for some prime p.