Low-power radio design for the IoT
 Exercise 2 (03.03.2022)

Christian Enz
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Problem 1 Phase Mismatch in 16QAM Generator

Due to imperfections, a 16QAM generator produces:

$$
\begin{equation*}
x(t)=\alpha_{1} A_{\mathrm{c}} \cos \left(\omega_{\mathrm{c}} t+\Delta \theta\right)-\alpha_{2} A_{\mathrm{c}}(1+\epsilon) \sin \left(\omega_{\mathrm{c}} t\right) . \tag{1}
\end{equation*}
$$

where $\alpha_{1}= \pm 1, \pm 2$ and $\alpha_{2}= \pm 1, \pm 2$.

- Construct the signal constellation for $\Delta \theta \neq 0$ but $\epsilon=0$.
- Construct the signal constellation for $\Delta \theta=0$ but $\epsilon \neq 0$.

Problem 2 Spectral Regrowth and Transmission Mask Requirements

A two-tone signal $x(t)=A_{1} \cos \omega_{1} t+A_{2} \cos \omega_{2} t$ is the input of a nonlinear power amplifier (PA) with compressing characteristic $y(t)$:

$$
\begin{equation*}
y(t)=\alpha_{1} x(t)-\left|\alpha_{3}\right| x^{3}(t) \tag{2}
\end{equation*}
$$

The spectrum of the signal at the output of the PA must respect the transmission mask shown in Fig. 1, where $\Delta f=0$ corresponds to the center of the band of the input signal.

Figure 1: Transmission Mask
Find the value for $\left|\alpha_{3}\right|$ that allows to respect such mask for $\omega_{1}=2 \pi * 2.409 \mathrm{GHz}, \omega_{2}=2 \pi * 2.41 \mathrm{GHz}$ and $A_{1}=A_{2}=0 \mathrm{dBm}$.

Problem 3 BER for M-ASK signaling

In the lecture it was shown that the probability of error for the BPSK signal is given by:

$$
\begin{equation*}
P_{e}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right), E_{b}=\frac{A^{2} T_{b}}{2} \tag{3}
\end{equation*}
$$

for a constellation given in Fig. 2(a). Figure 2(b) shows the constellation points of the 4-ASK modulation.

- Determine the average energy per symbol for the 4 -ASK modulation.
- Derive the probability of error for the 4-ASK modulation starting from the expression for the BPSK.
- Derive the probability of error for the general case of M-ASK modulation. Assume the constellation points are given by

$$
\begin{equation*}
x_{m 1,2}= \pm \frac{2 m-1}{2} A, m \in[1, M / 2] . \tag{4}
\end{equation*}
$$

Figure 2: Constellation points of (a) BPSK modulation and (b) 4-ASK modulation.

