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Goal. The goal of this lab is to understand some advantages and disadvantages of evolutionary 
algorithms (EAs). You will observe the effects of the mutation rate, crossover rate, selection 
pressure, population size and number of generations in artificial evolution, and reflect on how to 
change these parameters when performing an evolution according to different types of fitness 
landscapes.   
 
Rules: 

• You are expected to form a group of two people and work with one computer. 
• You are expected to complete all exercises during these two lab hours. 
• You should provide written answers for all exercises. There is no official submission of 

these written answers but it is crucial for your understanding for the following labs, the 
Robogen grand challenge and the final written exam. 

• A PDF with answers will be uploaded next week, before your next class, so that you can 
compare them with your answers. If you have any question, you can discuss them with 
the teaching assistants in class or by sending us an email. 
 

Some information:  The labs (TPs) for the Evolutionary robotics course are held in BS 160. You 
will be using your own computers. We will use the Python programming language in the first two 
lab sessions (this exercise sheet). We will use the browser version of the Robogen software in all 
subsequent labs. 
 
You will not have to do much programming in this exercise sheet, but a basic understanding of 
Python is required.  If you are not familiar with Python, you can find documentation and 
numerous tutorials on the official python website.  
 
Getting Started.  You will have to download the file EA_exercises.zip and unzip it. This lab 
employs the inspyred1  framework for the Python programming language. Python is not installed 
by default. 
 
Navigate to the directory where you unzipped the EA_exercises.zip file and run the setup.bat 
file by double-clicking on it. This should install Python 3.6.4 on your user’s account and setup 

                                                            

1  http://pythonhosted.org/inspyred/  
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your environment with all the required dependencies for this lab. The script will ask you if you 
wish to install Visual Studio Code (VSCode) which is an editor that has been configured with all 
the required extensions. We therefore recommend that you use VSCode now, as it could 
increase the productivity, but you can setup VSCode later by running the setup-vscode.bat file.  
 
To verify that everything is working properly, run the ea.bat file to open the command prompt 
in the right environment and run the following command2 : 
 
$>python exercises\test.py 
 
If you see “All Good.”  Then everything is working properly.  However, if you see an error, it 
means something went wrong and you should ask one of TAs for assistance. 

VSCode Setup 
If you are using VSCode, open the File menu and select Open Folder then navigate to the 
exercise directory.  
 
Install the recommended extensions when prompted. If the prompt does not appear, or if you 
pressed close by mistake, open the Extension view on the left side of the screen (3), open the 
menu (2) and select “Show Recommended Extensions” (3). Next, press the green Install button 
below Python and Code Runner. Press the blue Reload button or restart VSCode when the 
installation is finished. 

 
 



If your environment in VSCode is correctly set to 3.6.4 with all the required libraries, then you 
should see this: 
  

 
 
Each exercise has a corresponding .py file (named after the exercise number: exercise_1_1.py, 
exercise_1_2.py, etc.). To solve the exercises, you will have to open, edit, and run these .py 
files. 
  
Tip. If you do not know what a Python module/class/function does, open a Python command 
prompt by double-clicking ea.bat and typing: 
 
$>python 
 
And then run2  
 
>>>help(my_function)  
 
from the Python command prompt.  
 
Note.  In this lab, the genome of an individual is always a vector of real-valued parameters x = [x1 
x2 … xN]. Keep in mind that other types can be used to encode genomes but these will not be 
explored in this lab. The fitness of an individual is given by the fitness function f(x). Here, the aim 
of the EA is to minimize the function f(x), i.e. to find the vector xmin that has the lowest value f(x). 
In other words, lower values of f(x) correspond to a better fitness.  

                                                            

2  Just like we use $> to represent the DOS command prompt, we use >>> to represent the Python 
command prompt.  Do not retype these symbols! 



Exercise 1 
 
In this first exercise, we will not yet run a complete EA. Instead, we consider a single parent 
individual x0, from which a number of offspring individuals are created using a Gaussian mutation 
operator (which adds a random number from a Gaussian distribution with mean zero and a 
standard deviation σ that you will set to each parameter xi of the parent). The fitness function is 
defined as: 
   
 
 
 

 
 
 
 
 

 
 
 
 
This fitness function is unimodal, it has a single global minimum at the origin. We will analyse the 
effects of mutations on the fitness depending on the value of the parent x0, the mutation 
magnitude (the standard deviation σ), and the number of dimensions N of the search space. 
 
Exercise 1.1 
 
In VSCode, open exercise_1_1.py and press the Run button in the upper left corner. If you are not 
using VSCode, double click ea.bat to open a terminal and type3: 
 
$>python exercises\exercise_1_1.py 
 
You can also type the above in the VSCode terminal to run 
the file.  
 
In this exercise, a single parent x0 is mutated to generate 
multiple offspring using a Gaussian mutation operator. 
You should first consider a one-dimensional case, then 
two dimensions, and finally many dimensions (e.g. N 

                                                            

3 Note. For all exercises in this lab, you may follow the name of the .py file with an integer value 
which will serve as the seed for the pseudo-random number generator.  This will allow you to reproduce 
your results. 



=100). For the one-dimensional case, you should try different parents, e.g. x0=0.1, x0=1 and x0=10, 
and use different mutation magnitudes (standard deviations σ). Run the algorithm and wait for 
it to finish. A boxplot4 will appear which shows the fitness of the offspring. The fitness of the 
parent will be shown as a dashed green line on the same plot. A second figure will also appear 
when there are one or two dimensions which shows the parent and the offspring on the fitness 
landscape. As our objective is to find the global minimum, try tuning the parameters such that at 
least one of the children has near zero fitness. Provide written answers for the following 
questions: 
 

• Do the mutations tend to improve or worsen the fitness of the parent? 
• Are low or high mutation magnitudes best for improving the fitness? How does this 

depend on the initial value of the parent and on the number of dimensions of the search 
space? 

 
Exercise 1.2 
 
Run the exercise_1_2.py file to confirm the observations that you did qualitatively in the previous 
exercise. You will see boxplots plotted side-by-side to evaluate the statistical significance of 
observed differences. Compare different values for: 

• The number of dimensions of the search space 
• The value of the parent (how close it is to the optimum) 
• The mutation magnitude 

If you vary one of these three parameters, make sure that you set the other two at a constant 
value (otherwise it may be difficult to interpret your results). Try to confirm the answers that you 
gave in the previous exercise. 
 
 
Exercise 2 
 
We will now use an EA to find the minimum of the unimodal fitness function defined in the 
previous exercise. You should analyse how the mutation rate magnitude, dimensionality of the 
search space and the number of generations influence the results. 
 

 
                                                            

4 Visit https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html if you are 
unfamiliar with boxplots 

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html


 
Exercise 2.1 
 
You will now use a basic, mutation-only EA. Run the exercise_2_1.py file which is initially set to 
optimize for a one-dimensional function. How close is the best individual from the global 
optimum? Increase the dimensionality of the search space to two-dimensions and higher. Now 
how close are the best individuals from the global optimum? Can you get as close as you did in 
the one-dimensional case by modifying the mutation magnitude and/or the number of 
generations? 
 
Exercise 2.2 
 
Run the exercise_2_2.py file to do three batches of 30 runs of the EA with different mutation 
magnitudes (it may take more time than previous runs). The boxplot that appears compares the 
best fitness values obtained in the three conditions. Try to explain the results. 
 
Exercise 3 
 
In this exercise we will analyse the effect of crossover in the EA. Using crossover, a new individual 
is formed by making a new vector where each entry xi is randomly selected from one of the two 
parent individuals x1 and x2. The EA has a parameter defining the fraction of offspring that is 
created using crossover at each generation (the remaining individuals are created via asexual 
reproduction). 
 

 
 
Exercise 3.1 
 
Using the same setup as in the first two exercises, the exercise_3_1.py file does 30 runs using 
mutation only (as in the previous exercises) and 30 runs using crossover only. The boxplots 
compare the best fitness values obtained in the two cases. See if you can explain the results. 
 
Exercise 3.2 
 
Run exercise_3_2.py to compare the best finesses obtained by varying the fraction of offspring 
created using crossover (while using a fixed mutation probability of 0.5, i.e. each loci xi of each 
genome will have a 50% chance of being mutated).  



 
Is there an optimal crossover fraction for this fitness function? Interpret the results. 
 
Note: You can also set the mutation rate to zero in this exercise to realize that effect of crossover 
only.  
 
Exercise 4 
 
We will now investigate the effect of the selection pressure. 
 

 
 
Run the exercise_4.py file to compare the best fitness values and the distances from the global 
optimum obtained using tournaments of size 2 and 10. Try each for both the sphere and 
Rastrigin5 fitness function. Note: In the previous exercises, we were using tournament selection 
with a tournament size of 2. 

• Which tournament size gives better results for the sphere fitness function and why? 
• Which tournament size is better for the Rastrigin fitness function and why? 

 
 
Exercise 5: Let’s explore!  
 
In this exercise you will investigate running the EA on many test functions commonly used to 
benchmark optimization algorithms. Run the EA on the benchmark functions shown below 
(especially the multimodal functions) and adapt the mutation magnitude, crossover rate, 
selection pressure, and population size to get the best results. If you run the code as provided, it 
will initialize and bound the values of your population vectors to suitable ranges.  You may 
comment/uncomment certain lines to alter this behaviour.  See the comments in exercise_5.py 
for further details.   
 
 

                                                            

5 http://pythonhosted.org/inspyred/reference.html#inspyred.benchmarks.Rastrigin  

http://pythonhosted.org/inspyred/reference.html#inspyred.benchmarks.Rastrigin


   

Sphere Function Rastrigin Function Ackley Function 

 
  

Griewank function Rosenbrock Function Schwefel Function 

 
You should first try the 1D or 2D cases so that the fitness landscape can be visualized. However, 
keep in mind that sometimes the resolution of the plot is not sufficient to accurately represent a 
function. 
 
 
  



 
Exercise 6 
 
In this exercise you will investigate running an EA to evolve the parameters of an artificial neural 
network (ANN).  While there are other ways to learn the weights of an ANN, using evolution is an 
effective means in many circumstances. We will first evolve the weights of a simple feed forward 
neural network and then we will look at evolving the weights of more complex, recurrent neural 
nets. 
 
N.B. All hidden and output neurons of these neural networks use the logistic activation function: 

𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
 

 
Exercise 6.1 
 
We begin by evolving the weights of a minimal neural network to solve the Or problem.  That 
means we will use a neural network that has two inputs, and one output, which should produce 
the logical Or function of the two input values: 
 

Input 1 Input 2 Target Output 
1 1 1 
1 0 1 
0 1 1 
0 0 0 

 
 
Run exercises_6_1.py to evolve the weights for this Or network. The fitness here is the sum of 
squared errors between the network’s output and the target output across each of the four input 
patterns.  If you see the best fitness approach zero (e.g. a fitness of less than 0.1) then you have 
found a network able to solve this problem.  This most likely looks similar to: 



 
Here the neural network is depicted with its weights and biases shown by the corresponding 
color.  If you were able to solve the Or problem, look at the weights of the neural network and 
think about/compute how it behaves when given different input patterns.  It is important to think 
about this now, because it will be difficult to keep track of what our neural networks are doing 
once we start using more complex topologies. 
 
If you were not able to solve the Or problem, try modifying some of the parameters of the EA 
until you are able to do so. 
 
Once you are able to solve  Or, try solving the AND problem instead (change problem_class = Or 
to be problem_class = And).  Did the same parameters that you used for Or work for And as well?  
If not, modify them until you are able to solve And. 
 
Now that we can solve Or & And, we will try something a little more challenging.  Change the 
problem_class to be Xor, so that we are now trying to solve the Exclusive Or (Xor) function: 
 

Input 1 Input 2 Target Output 
1 1 0 
1 0 1 
0 1 1 
0 0 0 

 
This function has one small, but crucial difference from Or, as can be seen by comparing their 
truth tables. 
 
Try running the code again after change the problem to Xor.  Can you solve it?  What if you change 
some parameters of the EA, such as the population size, crossover rate, max generations, etc.?  
If you are unable to solve it, why is that?  Think back to what you saw in the lecture. 
 



Here we offer you one new parameter to modify that you did not see in the previous exercises, 
and that is the number of hidden units of the neural network.  Try changing this parameter from 
0 to 1.  Does this allow you to solve the problem?  What if you change this value to 2 or some 
higher number?  How many hidden neurons are required to solve this problem?  Can you provide 
an explanation for why that is the case? 
 
When you find a network that does compute Xor, once again see if you can understand how the 
network does so. 
 
Exercise 6.2 
 
So far we have looked at networks where you give them an input vector and they immediately 
produce an output.  However, there are many tasks that we want to use neural networks for that 
should not base their output solely on one instance of time but should instead respond to 
changing inputs over time.  In this exercise we will begin to investigate these types of problems 
and you will see many more of them later in the course when we begin to use neural networks 
for controlling robots. 
 
First, we start with a modified version of the Or problem, that is called “Temporal Or”.  While the 
basic Or problem involved evolving a neural network that would give a single output when 
provided two simultaneous inputs, in Temporal Or, there is only a single input neuron and the 
input values are provided in sequence.  Therefore, the network will have to remember the first 
input when seeing the second in order to output the correct value. 
 
Try running exercise_6_2.py to solve Temporal Or.  Is the EA able to solve this problem?  If not, 
try repeating some of your strategies from the previous exercise such as modifying the EA 
parameters or adding more hidden neurons.  Can you now evolve a successful network? 
 
If you still cannot evolve a network able to compute Temporal Or, notice that there is one new 
parameter that you can modify: “recurrent”.  This parameter is a Boolean flag, that says whether 
the network is recurrent (in this case an Elman network) or not (in which case it is feed forward).  
If you set recurrent to be True, can you now evolve a successful network?  Why might recurrence 
be important for being able to solve a temporal problem such as this? 
 
Once you have been able to evolve a network capable of solving Temporal Or, you can change 
the problem_class to TemporalAnd and repeat.  Did the same parameters that solved Temporal 
Or also work for Temporal And?  Why or why not? 
 
Finally, change the problem_class to TemporalXor to attempt solving a temporal version of Xor.   
Run the code again.  Are you able to find a successful network?  If not, think back to what you 
just saw as well as the previous exercise.  What combination of recurrence and number of hidden 
nodes is needed to solve Temporal Xor and why is this the case? 
 



Conclusions 

 
• Are there optimal parameters for an EA?  
• What are the advantages and disadvantages of  

o Low/high mutation rates? 
o Low/high selection pressure? 

• Based on these observations, do you think there is an optimal mutation rate for a 
biological organism? Do mutations typically improve or worsen the fitness of a biological 
organism? In which situations do you think low/high mutation rates are advantageous for 
a population of bacteria? 

• What is the genotype and what is the phenotype in the problems considered in this lab? 
• Why are hidden units sometimes needed for a neural network to solve a given task?  What 

is the defining characteristic of problems that networks without hidden units are unable 
to solve? 

• Why are recurrent connections needed to solve certain problems?  What is the defining 
characteristic of problems that networks without recurrent connections are unable to 
solve?  Are there problems that require recurrent connections and multiple hidden units? 
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