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Reinforcement Learning and SARSA 

Objectives for today:

- Reinforcement Learning (RL) is learning by rewards

- Agents and actions, states and rewards

- Exploration vs Exploitation

- Bellman equation

- SARSA algorithm

Part 1: Examples of Reward-based Learning 

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018)

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5;  6.4



Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:

Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a

General Reinforcement Learning Algorithm

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5;  6.4
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Review: Artificial Neural Networks for classification

input

output

car
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review: Artificial Neural Networks for classification

input

output

 𝒙𝜇, 𝒕𝜇 , 1 ≤ 𝜇 ≤ 𝑃  ;

Prerequisite for learning:

labeled data base
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review: Artificial Neural Networks for classification

 𝒙𝜇, 𝒕𝜇 , 1 ≤ 𝜇 ≤ 𝑃  ;

Prerequisite for learning:

labeled data base

Question: Is this realistic?
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Previous slide.

In the previous lecture (on Perceptron Learning) we started with a data base 

consisting of a large number of patterns, each one with its label. 

But a question remains: Is this realistic? Do we ‘normally’ have a training base 

with labeled data? Where should this come from? 

A first answer is: there are lots of examples of sequences in the world around us. 

If the aim is to predict the next step of the sequence, then we have lots of labeled 

data (because we just have to compare the prediction of the network with what 

actually happens in the next step).

In this case, we can still use the framework of ‘supervised learning’ where the 

next step (e.g., next frame of video) is the supervisor (=label). If time remains, we 

will come to sequences at the very end of the semester.

In the following, however, we focus on a completely different scenario which has 

very little overlap with supervised learning:  The paradigm of reinforcement 

learning.



Where is the supervisor?

Where is the labeled data?

Artificial Neural Networks for action learning

Replaced by:

‘Value of action’

- ‘goodie’ for dog

- ‘success’

- ‘compliment’

BUT:

Reward is rare:

‘sparse feedback’ after

a long action sequence7



Previous slide. 

How does a human learn to play table tennis: How does a child learn to play the 

piano? How does a dog learn to perform tricks?

In all these cases there is no supervisor. No master guides the hand of the 

players during the learning phase. Rather the player ‘discovers’ good movements 

by rather coarse feedback. For example, the ball in table tennis does not land on 

the table as it should. That is bad (negative feedback). The ball has a great spin 

so that the opponent does not get. This is good (positive feedback).

Similarly, it is hard to tell a dog what to do. But if you reinforce the dog’s behavior 

by giving a ‘goodie’ at the moment when it spontaneously performs a nice action, 

then it can learn quite amazing things.

In all these cases it is the ‘reward’ that guides the learning. Rewards can be the 

goodie for the dog, or just the feeling ‘now I did well’ for humans.



Reward information is available in the brain

Neuromodulator dopamine:

Signals “reward minus expected reward”

Dopamine

Schultz et al., 1997,

Waelti et al., 2001

Schultz, 2002

‘success signal’



Previous slide. 

Inside the brain, reward information is transmitted by the neuromodulator 

dopamine. Neurons that use dopamine as their chemical transmission signal are 

situated in nuclei below the cortex and have cables (axons) that reach out to vast 

areas of the brain.

As we will see later, neurons that communicate with the neuromodulator 

dopamine transmit a generic success signal that is not just reward, but something 

like ‘reward minus expected reward’.

To conclude, reward information is available throughout the brain.



Examples of reinforcment learning

Middle bar: shifted left or shifted right?

Observers get better at seeing 

the shift of the middle bar

Feedback: 

tone for wrong response

Tartaglia,Aberg,Herzog 2009

Min.

shift



Previous slide (This example is not shown in class) 

Let us look at a few additional examples, beyond table tennis.

Humans can get, by practice and feedback, better at recognizing a visual pattern 

with three bars. The task is to distinguish cases where the middle bar is shifted to 

the left from those where it is shifted to the right.

Bottom right: 

The minimal shift that is just recognizable decreases over time (1 block = 1 

practice session) indicating learning.

The feedback signal is just right or wrong.



Examples of reinforcement learning: animal conditioning



Previous slide. 

If you put a rat into an environment it will wander around. Suppose that, at some 

place, it discovers a food source hidden below the sand of the surface. 

After a couple of trials it will go straight to the location of the food source which 

implies that it has learned the appropriate sequence of actions in the environment 

to find the food source.



Examples of reinforcement learning: animal conditioning

Foster, Morris, Dayan 2000

Rats learn to find

the hidden platform

(Because they like to 

get out of the cold water)

Time to find platform

10                trials  

Morris Water Maze



Previous slide. 

Actual experiments for location learning are often performed in a Morris water 

maze. In the maze, there are 4 starting points and one target location which is a 

platform hidden (in milky water) just below the water surface. The rat does not like 

to swim in cold water and therefore tries to find the platform.

After a few trials it swims straight to the platform.

Bottom right: the time to reach the platform decreases over trials, indicating 

learning. 



Chess Artificial neural network 

(AlphaZero) discovers different

strategies by playing against itself.

In Go, it beats  Lee Sedol

Go

Deep reinforcement learning



Previous slide. 

In chess a neural network trained by reinforcement learning discovers winning 

strategies by playing against itself. Similarly, a neural network playing Go against 

itself learns to play at a level so as to beat one of the world champions.

The aim of the class is to arrive at Deep Reinforcement Learning (Deep RL):

Today we start with (standard) RL, in a few weeks we turn to deep networks, and 

in May we will turn to Deep RL.



Deep reinforcement learning

Network for choosing action

2nd output for value of state:

probability to win

input

output

action:
Advance king

Learning by success signal

- change connections

aim:

- choose next action to win

aim for value unit:

- predict value of current 

position



Previous slide. 

At the end of this semester, you will be able to understand the algorithms and 

network structure used to achieve these astonishing performances. Important are 

two types of outputs.

Left: different output neurons represent different actions.

Right: an additional output neuron represents the value of the present state; we 

can loosely define the value as the probability to win.

The input is a representation of the present state of the game.

Details will become clear toward the end of the semester; at the moment the aim 

is just to give you a flavor of the high-level concepts.



Deep Reinforcement Learning: games

advance push 

left

actions

value

Aim: Play Pong (Atari game)



Previous slide. 

In the miniproject on RL, you will train a game. Training will be based on reward: 

successful  behavior  of the simulated agent will give positive rewards. 



Quiz: Rewards in Reinforcement Learning 

[ ] Reinforcement learning is based on rewards

[ ] Reinforcement learning aims at optimal action choices

[ ] In chess, the player gets an external reward after every move

[ ] In table tennis, the player gets a reward when he makes a point

[ ] A dog can learn to do tricks if you give it rewards at appropriate 

moments

[x]

[x]

[ ]

[x]

[x]



Previous slide. Your notes. 
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Part 2: Elements of Reinforcement Learning

- Examples of Reward-based Learning

- Elements of Reinforcement Learning



Previous slide.

We now start with the formalization of reinforcement learning 



Elements of Reinforcement Learning:

-states 

-actions

-rewards 



Previous slide. 

Reinforcement learning needs states, actions, and rewards.



Elements of Reinforcement Learning:

- discrete states 

- discrete actions 

- sparse rewards



Previous slide.

Note that, for standard formulations of Reinforcement Learning Theories this 

(normally)  implies discretizing space and actions.

We will study continuous-space formulations only next week. 



Elements of Reinforcement Learning:

- discrete states: 

old state

new state 

𝑠

𝑠′

- Mean rewards for transitions:
𝑅𝑠→𝑠′

𝑎

- current state: 𝑠𝑡

- current reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

- discrete actions: 𝑎1, 𝑎2 … 𝑎𝐴

a2

- current action: 𝑎𝑡



Previous slide.

The elementary step is:

The agent starts in state s.

It takes action a

It arrives in a new state s’

Potentially receiving reward r (during the transition or upon arrival at s’).

Since rewards are stochastic we have to distinguish the mean reward at the 

transition (capital R with indices identifying the transition) from the actual reward 

(lower-case r with index t) that is received at time t on a transition.

Note that in many practical situations most transitions or states have zero 

rewards, except a single ‘goal’ state at the end. 



States in Reinforcement Learning:

- discrete states: 

starting state

arrival state 

𝑠

𝑠′

- current state: 𝑠𝑡

𝑠 𝑠′

state = current configuration/well-defined situation 

= generalized ‘location’ of actor in environment

a



Previous slide.

What are these discrete states?

Loosely speaking a state is the current configuration that uniquely describes the 

momentary situation. We can think of the   generalized ‘location’ of the actor in the 

environment

To get acquainted with this, let us look at an example.



reward if tip above line

From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

States?

 discretize!

Suppose 5 states per dimension,

How many states in total?

[ ] 5

[ ] 25

[ ] 125

[ ] 625

3 actions:        = no torque, 

= torque +1 at elbow,  

= torque -1 at elbow

a1

a2

a3

5x5x5x5=625



Previous slide. 

The aim of the acrobat is to move the tip above the blue line. To achieve this 

torque can be applied at the ‘elbow’ link. The second link is the ‘shoulder’.

There are three possible actions.

But what are the states? How many states do we have?



From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

1st episode: long sequence of random actions

400th episode: short sequence of ‘smart’ actions



Previous slide.

An episode finishes if the target is reached. Over time episodes get shorter and 

shorter indicating that the acrobat has discovered (via reinforcement learning) a 

smart sequence of actions so as to reach the target (i.e., move the tip above the 

reference line)



From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

after 400 episodes



Previous slide. 

One example of an action sequence, after learning, is shown.



Summary: Elements of Reinforcement Learning

- discrete actions: 

- Mean reward for transition:

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠, 𝑎, 𝑠 ,

𝑎

- current actual reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

There can be MANY states

Often need to discretize first

( next week we try to model in continuum)     

𝑎



Previous slide. 

Conclusion: In all practical situations, there is an enormous number of states.

In many situations we can think of the actions as discrete. For the moment we 

also think of the states as discrete (but next week we will go to continuous state 

space) 



Quiz: Reinforcement Learning for backgammon

From Book:

Sutton and Barto

Game position =

discrete states!

Suppose 2 pieces  per player,

How many states in total?

[ ] 100<n<500

[ ] 500<n<5000

[ ] 5 000<n<50 000

[ ] n>50 000

N>24x24x23x23>23x23x23x23>250 000



Previous slide. 

Backgammon game. There are 24 fields on the board. Players have several 

pieces. Pieces are protected if there are two of the same color on the same field.

To make it simply, we now consider that both players have two pieces each left.

How many  different states are there in total?
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- Elements of Reinforcement Learning

- One-step horizon (bandit problems)



Previous slide. 

We start with the simplest discrete example: the game is over and reward is given 

after a single step.



coins

buttons

Slot Machine

3-armed bandid

action=button press

One-step horizon games (bandit)



Previous slide. 

The standard example is a multi-armed bandit, or slot machine: you have to 

choose between a few actions, and once you have pressed the button you can 

just wait and see whether you get reward or not.



One-step horizon games 𝑠

𝑠′

a1

Blackboard1:

Q-valuesQ-value:

Expected reward for

action a starting from s Q(s,a1)

Q(s,a)



Previous slide. 

One of the most central notion in reinforcement learning is the Q-value. 

Q(s,a) has two indices: you start in state s and take action a.

The Q-value Q(s,a) is (an estimate of) the mean expected reward that you will get 

if you take action a starting from state s.



One-step horizon games Blackboard1:

Q-values



Your notes. 



One-step horizon games: Q-value

𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑃𝑠→𝑠"
𝑎3

𝑠"

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠′, 𝑎, 𝑠

Q-value

Expected reward for

action a starting from s

Q(s,a)

Q(s,a3)Q(s,a1) Q(s,a2)

Reminder:

Now we know the Q-values: which action should you choose?

𝑄 𝑠, 𝑎 = 𝐸 𝑟 𝑠, 𝑎

Similarly:



Previous slide. 

is the probability that you end up in a specific state s’ if you take action 

a1 in state s. 

We refer to this sometimes as the ‘branching ratio’ below the ‘actions’.

Q(s,a)   is attached to the branches linking the state s with the actions.

actions are indicated by green boxes; states are indicated by black circles.

The mean reward 𝑅𝑠→𝑠′
𝑎 is defined as the expected reward given that you start in 

state s with action a and end up in state s’ (see Blackboard 1).

Given the branching ratio and the mean rewards, it is easy to calculate the Q-

values (Blackboard 1).

𝑃𝑠→𝑠′
𝑎1



Optimal policy (greedy)

take action a* with

Q(s,a*)  ≥ Q(s,aj)

other actions

𝑠

𝑠′

a1 a2 a3

Q(s,a3)Q(s,a1) Q(s,a2)

a*= argmaxa [Q(s,a)]

optimal action:

Suppose all Q-values are known: 

Optimal policy is also called ‘greedy policy’

=6 =2 =5



Previous slide. 

And once you have the Q-values it is easy to choose the optimal action:

Just take the one with maximal Q-value.



One-step horizon games

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

BUT: we normally do not know the Q-values

 estimate by trial and error

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

Q(s,a3)



Previous slide. 

The only remaining problem is that we do not know the Q-values, because the 

casino gives you neither the branching ratio nor the reward scheme.

Hence the only way to find out is by trial and error (that is, by playing many times 

– the casino will love this!).



Exercise 1 now (preparation)

𝑠

𝑠′

a1 a2 a3
𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑃𝑠→𝑠′
𝑎1

Expected reward 𝑄 𝑠, 𝑎1

Show that empirical averaging over k trials gives an update rule

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]

𝑟𝑡

h



Next Lecture at 12h15Exercise 1 now (in class)



Blackboard2:

Exercise 1



Your notes. 



Convergence in Expectation

After taking action a in state s, we update with

(i) If (1) has converged in expectation, then  𝑄 𝑠, 𝑎 has 

an expectation value,

(2) 

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

h

(ii) If the learning rate h decreases, 

fluctuations around 𝐸[ 𝑄 𝑠, 𝑎 ] decrease.  

Proof of (i) will 

come:

Blackboard3

𝐸  𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎 = 𝑄(𝑠, 𝑎)

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]              (1)              



Previous slide. 

The exact value of h is not relevant, as discussed in the theorem. Important is 

that h is small at the end of learning so as to limit the amount of fluctuations.

When evaluating the expectation value, eta drops out since the equations are 

linear   (for the bandit problem = 1-step horizon). This is not true for multi-step 

horizon that we discuss later in this lecture.



Proof: Convergence in Expectation

After taking action a in state s, we update with

(i) If (1) has converged in expectation, then 
 𝑄 𝑠, 𝑎 has an expectation value,

(2) 

𝑠

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

h

𝐸  𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎 = 𝑄(𝑠, 𝑎)

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]              (1)              

Blackboard3:

Proof of (i)



Your notes. 



Blackboard3
converged in expectation  𝐸(∆  𝑄 𝑠, 𝑎 )=0



Your notes. 



One-step horizon: summary

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

If Q-value not known: 

 estimate  𝑄 by trial and error

 update with rule

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]       (1)h

Let learning rate h decrease over time 

Iterative algorithm (1) converges in expectation



Previous slide. 

Let us distinguish the ESTIMATE  𝑄 𝑠, 𝑎 from the real Q-value 𝑄(𝑠, 𝑎)

The update rule can be interpreted as follows: 

if the actual reward is larger than (my estimate of) the expected reward, then I 

should increase (a little bit) my expectations. 

The learning rate h : 

In exercise 1, we found a rather specific scheme for how to reduce the learning 

rate over time. But many other schemes also work in practice. For example you 

keep h constant for a block of time, and then you decrease it for the next block. 
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Part 4: Exploration vs. Exploitation

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step horizon (bandit problems)

- Exploration vs. Exploitation



Previous slide.

To estimate the Q-values you have to play all the different actions several times. 

However, if you know the Q-values you should only play the best action. 



Problem:  correct Q values not known

(since reward probabilities and

branching probabilities unknown)

Exploration versus exploitation                            

Take action which looks 

optimal, so as to 

maximize reward

Explore so as to

estimate reward 

probababities

Exploration – Exploitation dilemma 𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

Ideal: take action with maximal 𝑄 𝑠, 𝑎

 𝑄 𝑠, 𝑎1

73



Previous slide.

Since Q-values are not known, you are always in the situation of an exploration-

exploitation dilemma. 

Note: All estimates of Q will be empirical estimates. To simplify, I write for the 

empirical estimate Q(s,a) without the hat.



greedy makes you stuck:

Example

a1 a2

s s=state

a2 action

s’=new state

Q(s,a1)

rt=5.5

Assume that you initialize all Q values with zero; set      =0.2 (constant)

update

Trial 1: you choose action a1, you get rt=5.5  𝑄 𝑠, 𝑎1 =1.1

Trial 2: you choose action a2, you get rt=4.0

Trial 3 – 4: continue ‘greedy’:  you continue with action 1

rt=4rt=0

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]h
h

𝑃𝑠→𝑠′
𝑎1 = 1

2
𝑃𝑠→𝑠3

𝑎2 = 3
4

rt=1    actual reward
𝑠2

 𝑄 𝑠, 𝑎2 =0.8

BUT: the expected reward is larger for action 2.Q(s,a)= 

'

''

s

a
ss

a
ss RP

𝑠1 𝑠3

^

^^

^

^
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Given the outcomes of the first two trials, action a1 looks better.

You can check that whatever the outcome in trial 3 (even for reward=0!), the 

estimated Q-value of action a1 is still higher than that of action a2!



a1 a2

s

s’

Q(s,a1)

a
ssR '<r> =

Q(s,a2)

greedy strategy:

- take action a* which looks best

Q(s,a*) ≥ Q(s,aj)   for all j

Problem: correct Q values not known

Exploration and Exploitation

ATTENTION:

with ‘greedy’ you may get

stuck with a sub-optimal strategy

(see Exercise 2)

77



Previous slide.

If you know the correct Q-values, the best choice would be to choose the action 

with maximal Q-value (called ‘greedy’ action).  But since you don’t know the Q-

values it is risky to choose the greedy action because you may get stuck with a 

suboptimal  choice.

In (almost all) applications of reinforcement learning we work with estimated Q-

values.

Previously we used a hat to distinguish the ESTIMATED  𝑄 𝑠, 𝑎 from the real Q-

value 𝑄(𝑠, 𝑎). However, in the following I will write the estimated Q-values without 

the hat. Nearly always Q means estimated Q.



a1 a2

s

s’

Q(s,a1)

a
ssR '<r> =

Q(s,a2)

greedy strategy:

- take action a* which looks best

Q(s,a*) ≥ Q(s,aj) for all j

Problem: correct Q values not known

-greedy strategy:

- take action a* which looks best

with prob



1P

Optimistic greedy:

initialize with Q values that are too big

Softmax strategy: take action a’ 

with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a








Exploration and Exploitation: practical approach

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]h

hats have been dropped

79



Previous slide.

Softer versions of greedy allow you to choose occasionally an action which looks 

suboptimal, but which allows you to further explore the Q-values of other options.

Epsilon-greedy and softmax are examples following this idea. 

Note that ‘softmax’ is a function that one also  encounters in multiclass tasks with 

1-hot coding (see course of ‘machine learning’; also later lecture on deep 

learning)

A radically different approach is optimistic greedy. If you initialize all Q-values at 

the same value, but clearly too high (compared to maximal reward that you can 

get in the scheme), then the Q-value of action a1 decreases initially each time 

you play a1, which in turn favors other actions that you have not yet played.



a1 a10

s

s’

R1 R10

Exploration and Exploitation: practical approach

Example: 10-armed bandit

with fluctuating reward

in each action, actual rewards

fluctuate around a mean

Rk= 𝑅
𝑠→𝑠′
𝑎𝑘

Epsilon-greedy: simulation

Optimal action

=0.1
=0.01
=0

average reward

book: Sutton and Barto

=0.1

=0

81



Previous slide. 

Computer simulation of a situation where actual rewards r fluctuate around the 

mean reward R. There are 10 different actions a1, …, a10 each with a different 

mean reward R1, …, R10.

There exist two different ways to evaluate the performance.

Top: what is the average reward that you get by playing epsilon-greedy?

Bottom: what is the  fraction of times that you play the optimal action, by playing 

epsilon-greedy.

Three different values of epsilon are used. 



Sutton and Barto, ch. 2

Exploration and Exploitation: practical approach

Epsilon-greedy, combined with iterative update of Q-values



Previous slide.

This is the style of pseudo-code that we will see a lot over the next few weeks. It is taken from 

the book of Sutton and Barto (MIT Press, 2018). 

Q(a) is the Q-value for action a. Since we have always the same starting state in which we have 

to make our choice of action, we can suppress the index of the state s. Q(a) = Q(s_{start},a).

N(a) is a counter of how many times the agent has taken action a.

In this specific example the learning rate eta is the inverse of the count N(a) (see earlier 

exercise); but in the more general setting we would remove the counter and just use some 

heuristic reduction scheme for eta.

Note that in class we define (1-epsilon) as the probability of taking the ‘best’ action 

corresponding to argmax Q and epsilon is then distributed over the OTHER actions. Sutton and 

Barto distribute epsilon over ALL actions, including the ‘best’.

Thus for a total choice of 3 actions, Sutton and Barto have a probability of epsilon/3 for the 

other actions (and with the definition in class it would be epsilon/2).



Quiz: Exploration – Exploitation dilemma 

[ ] With a greedy policy the agent uses the best possible action

[ ] Using an epsilon-greedy method with epsilon = 0.1 

means that, even after convergence of Q-values,

in about 10 percent of cases a suboptimal action is chosen.

[ ] If the rewards in the system are between 0 and 1 and Q-values

are initialized with Q=2, then each action is played at least 

5 times before exploitation starts.

(exploitation starts when you no longer choose the wrong action)

We use an iterative method and update  Q-values with eta=0.1

[ ]

[x]

[x]



Previous slide.

Here we define as in class  (1-epsilon) as the probability of taking the ‘best’ action 

corresponding to argmax Q and epsilon is then distributed over the OTHER 

actions. 



Quiz: Exploration – Exploitation with Softmax policy

[ ] Suppose we have 3 possible actions 𝑎1, 𝑎2 , 𝑎3 and use the 

softmax policy. Is the following claim true?

For 𝑄(𝑎1) = 4, 𝑄(𝑎2) = 1, 𝑄(𝑎3) = 0 the preference 

for action 𝑎1 is more pronounced 

than for 𝑄(𝑎1) = 34, 𝑄(𝑎2) = 31, 𝑄(𝑎3) = 30.

Softmax policy: take action a’ with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a








[no], 

𝑃(𝑎1) =
exp[𝛽𝑄 𝑎1 ]

 𝑘 exp[𝛽𝑄 𝑎𝑘 ]
=

1

1 +  𝑘>1 exp[𝛽(𝑄 𝑎𝑘 − 𝑄 𝑎1) ]

[ ]

 only differences of Q-values matter



Quiz: Exploration – Exploitation with Softmax policy

1. [ ] if we use softmax with beta = 10,  then, after 100 steps,

action 2 is chosen almost always 

2. [ ] if we use softmax with beta = 0.1, then, after 100 steps 

action 2 is taken about twice as often as action 1.

All Q values are initialized with the same value Q=0.1

Rewards in the system are     r =0.5 for action 1 (always)

and r=1.0 for action 2  (always)

Softmax policy: take action a’ 

with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a







[no], with beta=0.1, exp(beta*Q)=1+…

both action chosen with about the same prob.

We use an iterative method and update Q-values with eta=0.1

[yes], since beta[Q(a2)-Q(a1)]=5



Your notes (Quiz not given in class). 

Softmax policy: take action a’ 

with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a







[no], with beta=0.1, exp(beta*Q)=1+…

both action chosen with about the same prob.

[yes], since beta[Q(a2)-Q(a1)]=5

Use that exp(5) is a big number!



Exploration and Exploitation: Summary

- If we know the Q-values we can exploit our knowledge

- Exploitation = action which is best = argmax Q(a)

- But we never know the Q-values for sure

- We need to estimate the Q-values by playing the game

- Explore possibilities, transitions, outcomes, reward

For complex problems, there is no perfect trade-off between

exploration and exploitation 

90



Exercise 2 now: Exploration-Exploitation

∆𝑄 𝑠, 𝑎 = 0. 2 [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]Update rule in a and b is

Exercise 2 now Next 
Lecture: 14h15



Your notes. 



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: RL1

Reinforcement Learning and SARSA 

Part 5: Bellman Equation

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step Horizon (Bandit Problems)

- Exploration vs. Exploitation

- Bellman Equation



Previous slide.

So far our Q-values were limited to situations with a 1-step horizon. Now we will 

get more general. 



Teaching monitoring – monitoring of understanding 

[ ] today, up to here, at least 60% of material was new to me.

[ ] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture. 



Remark.

1. As an EPFL teacher, my aim is to teach such that 80 percent of the students in 

the classroom are able to follow at least 80 percent of the lecture.

Sometimes I succeed, sometimes I don’t.  

2. Since most courses in the master are optional, overlap is sometimes 

unavoidable. However, my aim as an EPFL teacher is to still present in each 

lecture 60 percent of material that is new to 60 percent of the students.

If part of a lecture is novel for less than 20 percent of the students, I am happy to 

remove that material from the in-class presentation (it could still stay in the notes).

So tell me, if you see a large overlap with other classes, and then I can take a poll 

in class to find out how many people are concerned.



Multistep horizon
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

a1 a2 a3

𝜋 𝑠, 𝑎Policy

Examples of policy:

-epsilon-greedy

-softmax

𝑃𝑠→𝑠′
𝑎

probability to choose 

action a in state s

Stochasticity 

probability to end in state s’
taking action a in state s

𝜋 𝑠, 𝑎1

1= 𝑎′𝜋 𝑠, 𝑎′

𝜋 𝑠′, 𝑎3

𝑃𝑠→𝑠′
𝑎1

𝑃𝑠′→𝑠"
𝑎3

Q(s,a3)



Previous slide.

After a first action that leads to state s’ starting from state s , the agent can now 

take a second action starting from s’.

Note that there are two different types of branching ratio:

describes the probability that the agent uses action a1 when it is in 

state s – based on the agent’s policy (such as epsilon-greedy)

describes as before the probability that the agent arrives in state s’ 

given that it chooses action a1 in state s.

As before we are interested in the expected reward. The Q value Q(s,a) describes 

the total accumulated reward the agent can get starting in state s with action a.

Next slide: rewards that are n steps away are discounted with a factor 𝛾𝒏

𝑃𝑠→𝑠′
𝑎1

𝜋 𝑠, 𝑎1



Total expected (discounted) reward
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝑄 𝑠, 𝑎1

Q(s,a)  =

Starting in state s with action a

=  𝑟𝑡 + 𝛾 𝑟𝑡+1+  𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3  +⋯

Discount factor: 𝛾 <1
-important for recurrent state transition graphs!

-avoids blow-up of summation

-gives less weight to reward in far future

= 𝐸[𝑟𝑡 + 𝛾 𝑟𝑡+1+  𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3 + … |𝑠, 𝑎)]



Previous slide.

Angular brackets denote expectation.

Red-font lower-case r indicates the reward collected over multiple time steps in 

one episode, starting in state s with action a.

Expectation means that we have to take the average over all possible future 

paths giving each path its correct probabilistic weight.



Bellman equation
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

Blackboard4:

Bellman eq.



Space for calculations. 



Bellman equation with policy p
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  













'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p
Q(s,a1)

Q(s’,a’)

Bellman equation =

value consistency of 

neighboring states

Remark:

Sometimes Bellman equation is written

for greedy policy: 𝜋 𝑠, 𝑎 = δ𝑎,𝑎∗

𝑎∗ = argmax
𝑎′

𝑄(𝑠, 𝑎′)with action 



Previous slide. 

The Bellman equation relates the Q-value for state s and action a with the Q-

values of the neighboring states. 

Neighboring means reachable in a single step.

Note that  the two different types of branching ratio both enter the equation.

Bottom: in the case of a greedy policy, the Bellman equation simplifies



Bellman equation (for optimal actions)
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  













'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p
Q(s,a1)

Q(s’,a’)

for greedy policy: 

𝜋 𝑠, 𝑎 = δ𝑎,𝑎∗

𝑎∗ = argmax
𝑎′

𝑄(𝑠, 𝑎′)with action 

𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠′→𝑠"
𝑎 [ 𝑅𝑠′→𝑠"

𝑎 +𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′𝑎′)]



Previous slide.

For a greedy policy, the sum over actions disappears from the Bellman equation 

and is replaced by the max-sign. 



Quiz: Bellman equation with policy p
𝑠

𝑠′

a a2 a3

𝑃𝑠→𝑠′
𝑎

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  













'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p
Q(s,a)

Q(s’,a’)
[ ] The Bellman equation is linear

in the variables Q(s’a’)

[ ] The set of variables Q(s’,a’) that solve

the Bellman equation is unique and 

does not depend on the policy 

[ ]

[ ]



Your comments. 



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: RL1

Reinforcement Learning and SARSA 

Part 6: SARSA Algorithm

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step Horizon (Bandit Problems)

- Exploration vs. Exploitation

- Bellman Equation

- SARSA Algorithm



Previous slide.

We not turn to the first practical algorithm, called SARSA. This is an algorithm that 

is widely used in the field of reinforcement learning. 



a1 a2

s

s’

Q(s,a1)

a
ssR '<r> =

Q(s,a2)

Review: Iterative update of Q-values

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]h

Solution:  iterative update 

while playing with policy 𝜋 𝑠, 𝑎

Problem:  Q-values not given 

𝑟𝑡



Previous slide.

Reminder: for the 1-step horizon scenario we found that we could calculate the Q-

values iteratively. 

We increase the Q-value by a small amount (with learning rate 0<eta<<1) if the 

reward observed at time t is larger than our current estimate of Q.

And we decrease the Q-value by a small amount if the reward observed at time t 

is smaller than our current estimate of Q.

Iterative updates with one data point at a time are also called ‘online algorithms’. 

Thus our update rule is an online algorithm for the estimation of Q-values.



a1 a2

s

s’

Q(s,a1)

a
ssR '<r> =

Q(s,a2)

Iterative update of Q-values for multistep environments

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]   h

Solution:  iterative update 

while playing with policy 𝜋 𝑠, 𝑎

Problem:  Q-values not given 

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Q(s’,a’)

?∆  𝑄 𝑠, 𝑎 =

𝑟𝑡

113



Previous slide.

The question  now is: can we have a similar iterative update scheme also for the 

multi-step horizon?



Blackboard5:

SARSA update

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Q(s’,a’)



Your notes. 



Iterative update of Q-values for multistep environments

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾  𝑄 𝑠′, 𝑎′ −  𝑄 𝑠, 𝑎 ]h

Solution:  iterative update 

while playing with policy 𝜋 𝑠, 𝑎

Problem:  

- Q-values not given

- branching probabilities not given

- reward probabilities not given 

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Q(s’,a’)

Bellman equation:

  













'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p

a1 a2 a3

117



Previous slide. 

Even for the case of the multi-step horizon, we can estimate the Q-values by an 

interative update: 

The Q-values Q(s,a) is increased by a small amount if the sum of  (reward 

observed at time t  plus discounted Q-value in the next step)  is larger than our 

current estimate of Q(s,a).

This iterative update gives rise to an online algorithm.

NOTE: in the following we always work with empirical estimates, and drop the 

‘hat’ of the variable Q. 



SARSA vs. Bellman equation
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  













'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p
Q(s,a1)

Q(s’,a’)

Bellman equation 

= consistency of Q-values 

across neighboring states

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h

SARSA update rule 

= make Q-values of neighboring states

more consistent



Previous slide.

The Bellman equation summarizes the consistency condition: 

The (average) rewards must explain the difference between Q(s,a) and  Q(s’,a’) 

averaged over all s’ and a’.

Or equivalently:

Q(s,a) must be explained by the (average) reward in the next step and the 

discounted Q-value in the next state.

The iterative update formula implies that Q(s,a) needs to be adapted so  the 

current reward explains the difference between Q(s,a) and Q(s’,a’).

An equivalent form of writing the update is:

This form highlights the similarity to the case of the update rule in the cae of the 

one-step horizon. 

DQ(s,a)=h  [r-(Q(s,a) -  Q(s’,a’))]



SARSA algorithm
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

a1 a2 a3

Q(s,a1)

Q(s’,a’)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]

1) being in state s

and having chosen action  a

[according to policy              ]

2) Observe reward r 

and next state   s’

3) Choose action   a’ in state s’

[according to policy ]

4) Update with SARSA update rule

5) set: s  s’;   a  a’

6)  Goto 1)

Initialise Q values

Start from initial state s

𝑟𝑡

Stop when all Q-values have converged

𝜋 𝑠, 𝑎

𝜋 𝑠, 𝑎



Previous slide.

The update rule gives immediately rise to an online algorithm. You play the game. 

While you run through one of the episodes you observe the state s, choose action 

a, observe reward r, observe next state s’ and choose next action a’. At this point 

in time (and not earlier) you have all the information to update the Q-value Q(s,a).

The name SARSA comes from this sequence state-action-reward-state-action. 



SARSA algorithm.

[ ] in SARSA, updates are applied after each move.

[ ] in SARSA, the agent updates the Q-value Q(s(t),a(t))

related to the current state s(t)

[ ] in SARSA, the agent updates the Q-value Q(s(t-1),a(t-1))

related to the previous state, once it has chosen a(t)

[ ] in SARSA, the agent moves in the environment 

using the policy

[ ] SARSA is an online algorithm

We have initialized SARSA and played for n>2 steps. 

Is the following true for the next steps?  

𝜋 𝑠, 𝑎

[x]

[  ]

[x]

[x]

[x]

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h



Previous slide.



Update of Q values  in SARSA (with 𝛾 =1)

policy for action choice:

),(maxarg* asQa a
a

t 

Exercise 4 (at 15h15): SARSA in 1-dim environment

Pick most often action

Break ties stochastically

Q(s1,a1)

r=1

Q(s’,a1)

a1
a2

s1

a1
a2

s’

a1

goal

r=0

r=0

States form linear sequence

Reward only at goal.

Initialise Q values at 0. Start at top state s1. 

Q values after 2 complete episodes?

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]



Exercise 4: SARSA for Linear Track. Exercise 4 (at 15h15)



Variant A: SARSA is consistent w. Bellman equation

𝑠

𝑠′

a

𝑠"

a’

Q(s,a)

Q(s’,a’)

𝑃𝑠→𝑠′
𝑎

We proof the following: 
Suppose that we have found a set of fixed (non-

fluctuating) Q-values: 

IFF 𝐸[∆𝑄 𝑠, 𝑎 ] = 0, then the Q-values solve the 

Bellman equation. 

Notes:

- Expectation is taken for fixed Q-values

and hence for fixed policy.

- Expectation E[∆𝑄 𝑠, 𝑎 ] is taken over 

all possible paths starting in (s,a)

Blackboard 6A:

SARSA



Your comments. 



Variant A: SARSA is consistent w. Bellman equation

Look at graph to take expectations: 

- if algo is on a branch (s,a), all remaining expectations. are “given s and a”

𝑠

𝑠′

a

𝑠"

a’

Q(s,a)

Q(s’,a’)

𝑟𝑡
𝑃𝑠→𝑠′

𝑎

p(s’,a’)

𝐸[∆𝑄 𝑠, 𝑎 ] = 𝐸[𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]=0h

Blackboard 6A:

SARSA
We have proven the following: 
Suppose that we have found a set of fixed (non-

fluctuating) Q-values. IFF 𝐸[∆𝑄 𝑠, 𝑎 ] = 0, then 

the Q-values solve the Bellman equation. 

 

𝑠′

𝑃𝑠→𝑠′
𝑎 + 𝛾 

𝑠′

𝑃𝑠→𝑠′
𝑎  

𝑎′

𝜋(𝑠′, 𝑎′) 𝑄(𝑠′, 𝑎′) = 𝑄 𝑠, 𝑎𝑅𝑠→𝑠′
𝑎



Previous slide.

This is version A of the theorem. In the proof, we exploit the condition:

In order to take the expectations, we look at graph: 

- if in the evaluation we are in state s’, all remaining expectations are “given s’”

- if we are on a branch (s,a), all remaining exp. are “given s and a”.

We exploit that all Q-values and the policy are fixed while we evaluate the expectation. 

Hence E[Q(s,a)] = Q(s,a).  

Note that the proof works in both direction. If the Q-values are those of the Bellman 

equation, the expected SARSA update step vanishes. And if the expected SARSA 

update step is zero, then the Q-values correspond to the Bellman equation. Both 

direction work under the assumption of a fixed policy.

The stronger theorem (with fluctuations, version B) is sketched in the appendix (and 

video).

𝐸[∆𝑄 𝑠, 𝑎 |𝑠, 𝑎] = 0



Additional Notes: This  weaker  theorem (variant A that corresponds to the one on the  

previous slide)  takes expectations for FIXED Q-values. We can interpret these 

expectations as the following ‘batch’ computation

We assume a fixed policy (i.e., under the assumption of a fixed set of  Q-values) and a 

‘batch version’ of SARSA. Batch-SARSA means that in order to evaluate 

we use a large number of  starts from the same value (s,a) each time running one step  

up to (s’,a’) [note that this gives different (s’,a’). Once the number of starts is large 

enough to get a full sample of the statistics we update Q(s,a).  If the updates with the 

batch-SARSA do not lead to a change of Q values (for all state-action pairs), then this 

means that batch-SARSA has converged to the Bellman equation for this fixed policy. 

(That was the theorem in the main text).

Batch-SARSA is a computational implementation of the way many statistical 

convergence proofs work: you assume that you average over a full statistical sample of 

all possibilities given your current state or the current state-action pair. Expectation 

signs  in the update step imply updating over a ‘full batch of data’. In this approach  Q-

values no longer fluctuate, and hence do not need expectation signs; the policy no 

longer fluctuates and also does not need expectations signs. 

𝐸[∆𝑄 𝑠, 𝑎 |𝑠, 𝑎]



Your comments. 



Variant B: Bellman equation and SARSA: theorem for small 

𝑠

𝑠′

a

𝑠"

a’

a1 a2 a3

Q(s,a)

Q(s’,a’)

𝑟𝑡
IF (i) all Q-values have converged in expectation

(ii) learning rate    is small  (h0)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h

Setting:

The SARSA algo has been applied

for a very long time, using updates

  













'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p

𝑃𝑠→𝑠′
𝑎

p(s’,a’)𝐸[∆𝑄 𝑠, 𝑎 |𝑠, 𝑎] = 0

h

h

THEN: fluctuations of Q are negligible and  the

set of expected Q-values solves the Bellman eq.

with the current policy p(s’,a’)



Previous slide. There are several different versions of the theorem. This version B 

is proven in the annex, in a fashion similar to the case of the 1-step horizon. 

In class (earlier slides) we have shown for the multi-step horizon a weaker 

statement: Expections over SARSA updates are consistent with the Bellman 

equation if the iterative updates have converged: In version A, we assume that 

Q-values are fixed, and do not fluctuate.

Note that taking the expectation in version A is different from averaging over trials in 

version B. In version A, taking the expectation means that we average over all possible 

outcomes in the current situation, with momentarily fixed Q-values and fixed policy (i.e., 

the one induced by the set of  Q-values at time t). This distinction is important, because for 

a fixed policy averaging is relatively easy. (However, when averaging over trials, the Q-

values and policy would be different in each time step, and the proof would require a limit h

0). 

Hence there are therefore two versions of the theorem and two proof-sketches:

Blackboard 6A. On the earlier slides, we assume Q-values are fixed and do not fluctuate. 

Blackboard 6B. In the Annex, we assume that Q-values may fluctuate slightly round their 

stable values. This approach gives additional insights into the situation of the online 

SARSA, once it has converged in expectation.



Teaching monitoring – monitoring of understanding 

[ ] today, up to here, at least 60% of material was new to me.

[ ] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture. 



- Reinforcement Learning is learning by rewards

 world is full of rewards (but not full of labels)

- Agents and actions

 agent learns by interacting with the environment

 state s, action a, reward r
- Exploration vs Exploitation

 optimal actions are easy if we know reward probabilities

 since we don’t know the probabilities we need to explore

- Bellman equation

 self-consistency condition for Q-values

- SARSA algorithm: state-action-reward-state-action 

 update while exploring environment with current policy 

Summary: Reinforcement Learning and SARSA

Learning outcome and conclusions:

Now:
Exercise session



Annex: Variant B - SARSA and Bellman equation  (proof  for small       ) 

𝑠

𝑠′

a

𝑠"

a’

a1 a2 a3

Q(s,a)

Q(s’,a’)

𝑟𝑡
IF (i) learning rate    is small;  AND IF

(ii) all Q-values have converged in expectation

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾  𝑄 𝑠′, 𝑎′ −  𝑄 𝑠, 𝑎 ]h

Setting:
The SARSA algo with stochastic policy p 

has been applied for a long time with updates

  













'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p

𝑃𝑠→𝑠′
𝑎

p(s’,a’)

𝐸[∆  𝑄 𝑠, 𝑎 |𝑠, 𝑎] = 0

h

THEN the expectation values of the 

set of  𝑄-values solves the Bellman eq.

with the current policy p(s’,a’)

h



Notes: A few points should be stressed:

1. This is not a convergence theorem. Rather we need to show:

if SARSA has converged then it has converged to a solution of the Bellman equation.

2. In fact, for any finite  h the SARSA Q-values (Q-hat) fluctuate a little bit. It 

is only the EXPECTATION value of the Q-hat which converges.

3. We should keep in mind that SARSA is an on-policy online algorithm for arbitrary

state-transition graphs. Hence the value Q-hat at (s,a) and  (s’a’) will both fluctuate! 

4. The policy depends on these Q-hat-values and hence fluctuates as well. 

To keep fluctuations of the policy small, we need small h . 

We imagine that all Q-hat values fluctuate around their expectation value   

with small standard deviation. As a result, p also fluctuates around a ‘standard’ policy. 

5. The fluctuations of the policy can be smaller than that of the Q-values: for 

example in epsilon-greedy, you first order actions by the value of Q(s,a), 

and then  only the rank of Q(s,a)  matters, not their exact values. In the proof we assume 

that the fluctuations of the policy become negligible ( shift policy outside expectation).

6.  We show that the Q-values in the sense of Bellman are the expectation values of  

the Q-hat in the sense of SARSA.

7. Expectations are over many trials of the ONLINE SARSA.

The statement and proof is different  to slide 127 and to the book of Sutton and Barto. 



SARSA has converged (in Expectation/small       )

Look at grph to take expectations  : 

- if algo is in state s, all remaining expectations are “given s”

- if algo is on a branch (s,a), all remaining exp. are “given s and a”

h

𝑠

𝑠′

a

𝑠"

a’

Q(s,a)

Q(s’,a’)

𝑟𝑡
𝑃𝑠→𝑠′

𝑎

p(s’,a’)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h

Blackboard 6B:

SARSA

(over trials)



Notes: This is a proof sketch of the consistency of online SARSA (Variant B). 

We  allow all Q-values to fluctuate around their expectation, but we still have to 

keep fluctuations of the policy negligibly small.  

If we allow for small fluctuations of the policy, then we have to realize that these 

fluctuations are correlated with the fluctuations of Q-values. Thus the evaluation 

of the product E(p Q) is not trivial. Moreover, correlations can lead to a shift of 

the value and make the result inconsistent with the Bellman equation.

The weaker  theorem  (Variant A that corresponds to the one on the slides in the main 

part of this lecture) takes expectations for FIXED Q-values. We can interpret these 

expectations as corresponding to a  ‘batch’ computation.

Batch-SARSA is a computational implementation of the way many statistical 

convergence proofs work: you assume that you average over a full statistical sample of 

all possibilities given your current state or the current state-action pair. Expectation 

signs  in the update step imply updating over a ‘full batch of data’. In this approach  Q-

values no longer fluctuate, and hence do not need expectation signs; the policy no 

longer fluctuates and also does not need expectations signs. 


