1 Exercice Bonus 2

Exercice 8. 1. By the definition of a valuation we have that $\nu_{p}\left(q^{-1}\right)=0$ too, because $\nu_{p}(q)+$ $\nu_{p}\left(q^{-1}\right)=\nu_{p}(1)=0$. Therefore $q^{-1} \in R$ and q is invertible.
2. The zero ideal is trivially an ideal of R. Now, take a non-zero ideal I, and let n be the smallest valuation that appears among the elements of I. Then there is an element of the form $y=p^{n} q$, where q is a unit. Take now any $x \in I$ non-zero. Then $\nu_{p}(x / y) \geq 0$, again by the properties of valuations and by the minimality of n, hence $x / y \in R$, and hence $I=(y)$
3. Consider the composition $\phi: \mathbb{Z} \rightarrow R \rightarrow R /\left(p^{n}\right)$. Where the first map is the inclusion and the second one is the quotient map. Then we can apply the isomorphism theorem to \mathbb{Z}, because
a) ϕ is surjective because let $a / b \in R$ (with $a, b \in \mathbb{Z}$ and $p \nmid b$). Then we can write $c p^{n}+d b=1$ for some $c, d \in \mathbb{Z}$. Hence $[d][b]=[1] \in R /\left(p^{n}\right)$. Hence, for every $\left[a b^{-1}\right]$ in $R /\left(p^{n}\right)$ we have $[a]\left[b^{-1}\right]=[a]\left[b^{-1}\right][b][d]=[a][d]=[a d]=\phi(a d)$.
b) The kernel of ϕ is generated by p^{n} as an ideal of \mathbb{Z}, because if x is in the kernel, that means that $x=(a / b) p^{n} \in R$, where a and b are as in the previous point. That is, $b x=a p^{n}$. Now, using that $p \nmid b$ we obtain that p^{n} divides $x \in \mathbb{Z}$.
4. From the previous points we know all the non-trivial ideals of R_{p} are of the form (p^{n}) for some $n \in \mathbb{N}$, and we know that their quotient is isomorphic to $\mathbb{Z} /\left(p^{n}\right)$. If R_{p} and R_{q} were isomorphic for two different prime numbers p and q, there would be isomorphism between their quotients. This is impossible because $\mathbb{Z} / p^{m} Z$ and $\mathbb{Z} / q^{n} Z$ are not isomorphic since their size is different (p^{m} and q^{n} respectively). Moreover, R_{p} is not isomorphic to \mathbb{Z}. To show this note that for every q such that $\nu(q)=0, q$ is invertible in R_{p}. If we had an isomorphism ϕ from R_{p} to \mathbb{Z}, we would have $\phi\left(q q^{-1}\right)=\phi(q) \phi\left(q^{-1}\right)=1$ and therefore $\phi(q)=\phi\left(q^{-1}\right)=1$. Contradicting the bijectivity.

