1 Exercice Bonus 2

- **Exercice 8.** 1. By the definition of a valuation we have that $\nu_p(q^{-1}) = 0$ too, because $\nu_p(q) + \nu_p(q^{-1}) = \nu_p(1) = 0$. Therefore $q^{-1} \in R$ and q is invertible.
 - 2. The zero ideal is trivially an ideal of R. Now, take a non-zero ideal I, and let n be the smallest valuation that appears among the elements of I. Then there is an element of the form $y = p^n q$, where q is a unit. Take now any $x \in I$ non-zero. Then $\nu_p(x/y) \ge 0$, again by the properties of valuations and by the minimality of n, hence $x/y \in R$, and hence I = (y)
 - 3. Consider the composition $\phi : \mathbb{Z} \to R \to R/(p^n)$. Where the first map is the inclusion and the second one is the quotient map. Then we can apply the isomorphism theorem to \mathbb{Z} , because
 - a) ϕ is surjective because let $a/b \in R$ (with $a, b \in \mathbb{Z}$ and $p \nmid b$). Then we can write $cp^n + db = 1$ for some $c, d \in \mathbb{Z}$. Hence $[d][b] = [1] \in R/(p^n)$. Hence, for every $[ab^{-1}]$ in $R/(p^n)$ we have $[a][b^{-1}] = [a][b^{-1}][b][d] = [a][d] = [ad] = \phi(ad)$.
 - b) The kernel of ϕ is generated by p^n as an ideal of \mathbb{Z} , because if x is in the kernel, that means that $x = (a/b)p^n \in R$, where a and b are as in the previous point. That is, $bx = ap^n$. Now, using that $p \nmid b$ we obtain that p^n divides $x \in \mathbb{Z}$.
 - 4. From the previous points we know all the non-trivial ideals of R_p are of the form (p^n) for some $n \in \mathbb{N}$, and we know that their quotient is isomorphic to $\mathbb{Z}/(p^n)$. If R_p and R_q were isomorphic for two different prime numbers p and q, there would be isomorphism between their quotients. This is impossible because $\mathbb{Z}/p^m Z$ and $\mathbb{Z}/q^n Z$ are not isomorphic since their size is different $(p^m \text{ and } q^n \text{ respectively})$. Moreover, R_p is not isomorphic to \mathbb{Z} . To show this note that for every q such that $\nu(q) = 0$, q is invertible in R_p . If we had an isomorphism ϕ from R_p to \mathbb{Z} , we would have $\phi(qq^{-1}) = \phi(q)\phi(q^{-1}) = 1$ and therefore $\phi(q) = \phi(q^{-1}) = 1$. Contradicting the bijectivity.