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What you will learn today
• Elements of biological nervous systems

• Artificial neuron models

• Neural architectures

• Input encodings

• Unsupervised learning

• Feature extraction and representations

• Topological Maps

• Supervised learning

• From error correction to backpropagation

• Deep learning with autoencoders

• Deep Convolutional Neural Networks



Do animals need nervous systems?

Not all animals have nervous systems; some use only chemical reactions
Paramecium and sponge move, eat, escape, display habituation
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Why Nervous Systems?

1) Faster reaction times = competitive advantage
2) Selective transmission of signals across distant areas = more complex bodies
3) Generation of non-reactive behaviors
4) Complex adaptation = survival in changing environments
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Central Nervous System with Cortex
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Biological Neurons
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Membrane Dynamics
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Depolarization

Hyperpolarization

Emission of rapid discharge on axon

This cycle lasts approximately 3-50 ms, depending on type of ion channels 
involved (Hodgkin and Huxley, 1952)



Types of Neurons

Interneurons can be
1- Excitatory
2- Inhibitory
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100 ms

Firing rate Firing time

McCulloch-Pitts Spiking neurons

Connectionism Computational
Biology

How Do Neurons Communicate?
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How Do Neurons Learn?

Hebb rule (1949):
Synaptic strength is increased if cell A consistently contributes to firing of cell B
This implies a temporal relation: neuron A fires first, neuron B fires second

synapse

pre-synaptic neuron post-synaptic neuron

A B

postsynaptic - presynaptic (ms)

% synaptic
modification

Spike Time Dependent Plasticity (STDP):
- Small time window
- Strengthening (LTP) for positive time difference
-Weakening (LTD) for negative time difference
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They learn by means of synaptic change

From Bi and Poo, 2001



What Does Make Brains Different?
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Components and behavior of individual neurons are very similar across animal
species and, presumably, over evolutionary history (Parker, 1919)

Drawing by Cajal, 1911

Evolution of the brain 
seems to occur mainly in 
the architecture, that is 
how neurons are 
interconnected.

First classification of 
neurons by Cajal in 1911 
was made according to 
their connectivity 
patterns



A neural network communicates 
with the environments through input 
units and output units. All other 
elements are called internal or 
hidden units.

Units are linked by uni-directional 
connections.

A connection is characterized by a 
weight and a sign that transforms 
the signal.

An Artificial Neural Network
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F x( ) = 1
1+ e- kx

Sigmoid function:
• continuous
• non-linear
• monotonic
• bounded
• asymptotic

tanh kx( )F x( ) =

Linear Step Sigmoid

x

x x

F x( ) F x( ) F x( )

Some output functions

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 
Dario Floreano and Claudio Mattiussi, MIT Press 15
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The output of a neuron is a measure of similarity between its input pattern 
and its pattern of connection weights.

1. Output of a neuron in linear algebra notation:

y = a wi xi
i

N

∑
" 

# 
$ % 

& 
, a = 1 y = w ⋅ x

cosϑ =
w ⋅ x
w x

, 0 ≤ ϑ ≤ π

2. Distance between two vectors is:

x = x ⋅ x = x1
2 + x2

2+.. .+xn
2

where the vector length is:

w ⋅ x = w x cosϑ
3. Output signals vector distance (familiarity)

ϑ = 0o → cosϑ =1,

ϑ = 90o → cosϑ = 0,

ϑ = 180o → cosϑ = −1,

Neurons signal “familiarity”
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Neural Receptive Fields
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The Receptive Field indicates the input area subtended by a neuron and
the input pattern that generates the strongest activation. 
RF can be visualized by plotting the weight pattern in the input space. 

Fully connected
(only some 

connections are 
shown)



A binary neuron divides the input space in two regions, one where
weighted input sum >=0 and one where weighted input sum <0. 

The separation line is defined by the synaptic weights:

w1x1 + w2x2 − ϑ = 0 x2 =
ϑ
w2

−
w1
w2
x1

Neurons can act as classifiers

€ 

ϑ > 0

€ 

ϑ = 0
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The threshold can be expressed as an additional weighted input from a 
special unit, known as bias unit, whose output is always -1.

From Threshold to Bias unit

• Easier to express/program
• Threshold is adaptable like other weights
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e

a) feed-forward
b) feedforward multilayer
c, d) recurrent
e) fully connected

Architectures
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Reservoir Architectures
Exploit rich dynamics in the reservoir of hundreds of randomly 
interconnected neurons with low connectivity (0.01, e.g)

Liquid State Machines (Maas et al, 2002)
Echo State Networks (Jaeger et Haas, 2004)



LOCAL
One neuron stands for one item
a.k.a. «Grandmother neurons»
Scalability problem

DISTRIBUTED
Neurons encode features
One neuron may stand for >1 item
One item may activate >1 neuron
Robust to damage

Local vs Distributed Input Encoding

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 
Dario Floreano and Claudio Mattiussi, MIT Press 22



Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 
Dario Floreano and Claudio Mattiussi, MIT Press 23

Normalisation of sensory input

!"# =
!"

∑&'() !&*



Filter convolution to capture spatial relationships
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Raw data

SoftmaxConvolve the image with a filter that 
highlights spatial relationships in image

Filter is swept through the image Features



Learning is experience-dependent modification of connection weights

Learning

€ 

Δwij = x j yi
Hebb’s rule (1949)

synapse

pre-synaptic neuron post-synaptic neuron

€ 

x j

€ 

yi

€ 

wij
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Learning is a gradual process and requires many input-output comparisons



Learning cycle
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1. Initialize weights (e.g., random values from normal distribution)

2. Present randomly selected input pattern to network

3. Compute values of output units

4. Compute weight modifications

5. Update weights

6. Repeat from 2. until weights do not change anymore

€ 

wij
t = wij

t−1 +ηΔwij
learning rate [0,1]

Standard weight update



Learning modalities
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Unsupervised learning

Supervised learning

Reinforcement learning (next week)

Evolution (next week)

Evolution and learning (next week)



Unsupervised learning: what for?
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Goal: learn compact structure (features) that describes input

!"# $ %&

Categories (labels): none

Input: x (images, signals, text, etc.)



Unsupervised learning
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€ 

Δwij = x j yi

The weight change depends only on the activity of the pre-synaptic 
and of the postsynaptic neurons

Unsupervised learning is used for 

• Detecting statistical features of the input distribution
• Data compression and reconstruction
• Detect topological relationships in the input data
• Memorization



Hebb’s rule suffers from self-amplification (unbounded growth of weights), but biological synapses 
cannot grow indefinitely

Oja (1982) introduced self-limiting growth factor in Hebb rule

Δwj = ηy xj − wj y( )

As a result, the weight vector develops along the direction of maximal variance of the input distribution. 

Neuron learns how familar a new pattern is: input patterns that are closer to this vector elict stronger
response than patterns that are far away.

Oja’s learning rule
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Oja rule for N output units develops
weights that span the sub-space of the 
N principal components of the input 
distribution.
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Sanger rule for N output units develops
weights that correspond to the N 
principal components of the input 
distribution.

Principal Component Analysis
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Do brains compute PCA?

An Oja network with multiple output units exposed to a large set of natural images develops
receptive fields similar to those found in the visual cortex of all mammals [Hancock et al., 1992]
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Image: Kelly Frankenburg

Mammals are born with pre-formed hierarchically-organized feature 
detectors. But they never saw anything in the womb: how can it be?



Multilayer Feature Detection
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Linsker (1986)

A

B

C

D

Input from Lateral Geniculate Nucleus

Topologically restricted connectivity

Linear activation function

Plain Hebbian learning with 
weight clipping at w+ and w-

Learn one layer at a time,
starting from lower layer



Emerging Receptive Fields
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Linsker (1986)

A

B

C

D

Input from Lateral Geniculate Nucleus

+++++++++

Average luminosity in RF

Simple feature detectors

Complex feature detectors



Neighbouring neurons respond to similar patterns with gradual transitions

The visual cortex is organized in specialized modules. 
Each module is composed by a series of columns of 
neurons. Neurons respond to bars at different orientation

1. The bar orientation gradually varies along the column. 
2. Neighbouring columns correspond to neighbouring
areas of the retina (retinotopic maps). 

Sensory maps

A similar structure exists in the auditory
cortex (tonotopic maps).
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Sensory-Motor Body Map
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Cortical neurons display the following
pattern of projective connectivity:

• up to 50-100 µm radius = excitatory
• up tp 200-500 µm radius = inhibitory
• up to few cm radius = slightly excitatory

Also known as Mexican Hat distribution

In a neural network, we can
approximate the Mexican hat with a 
bipolar weight distribution.

Lateral connections to neighbouring neurons



Formation of neural bubbles around strongest input

Input pattern

Laterally connected neurons

Gradual emergence of bubble centered 
around unit with strongest activation

Simplification: set output of unit with 
highest activation and its n neighbors to 
1, and all other units to 0



Let’s apply Hebb rule to  layer of such laterally connected neurons

yi =F Ai( )=
1 if within neighbourhood
0 otherwise
ì 
í 
î 

Dwij = h yi xj -Y yi( )wij( ) Y yi( )=
y if yi = 1
0 if yi = 0
ì 
í 
î 

1. The weights are changed only for the neurons that are geographically near
the neuron with the highest activity, 
2. The change moves the weight vector towards the input pattern.

If we set          equal to the learning rate h , then the learning rule becomes:Y y

Dwij =
h xj -wij( ) if yi = 1

0 if yi = 0

ì 
í 
î 

i
( )

wi
t+1 =

wit +h x -wit( ) if yi = 1

wi
t if yi = 0

ì 
í 
î 

and

Self-Organizing Topological Maps Kohonen (1982)

Y y( )



L i, i*( )=
1 if c i - c i <= r

0 otherwise

ì 
í 
î 

*

The neighbourhood size          is a critical aspect of map self-organization. It 
should be large at the beginning of training to give a chance to all neurons to 
change weights and gradually shrink

Neighborhood function
Y y( )

∆"#$ = &Λ (, (∗ +$ − "#$

We can incorporate the neighborhod
function in the learning rule
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Example of self-organizing map
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input

output



Self-organization phases

Ordering phase:
Fast
Neighborhood change

Convergence phase:
Slow
No neighborhood change



Supervised learning: what for
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Goal: learn mapping between input data and labels

!"# $ %&

Input: x (images, signals, text, etc.)

Category (label): y (eat, wear, wear, eat, wear, eat)



• Teacher provides desired responses for a set of training patterns

• Synaptic weights are modified in order to reduce the error between the output y and 

its desired output t (a.k.a. teaching input)

x0 x1 x2

y,  t

linear

units

repeat

for every

input/output

pair until 

error is 0

wij = rnd ±0.1( ) initialize weights to random values

yi = wij
j= 0
∑ x j

present input pattern and 

compute neuron output

Dwij = h ti - yi( )x j
compute weight change using 

difference between desired 

output and neuron output

wij = wij
t−1 + Δwij

get new weights by adding 

computed change to previous 

weight values

=d i ti - yiWidrow-Hoff defined the error with the symbol delta:

(a.k.a. delta rule)

Supervised Learning
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The delta rule modifies the weights to descend the gradient of the error function

EW =
1
2

t
i
µ - w

ij
j= 0
å x

j

æ 

è 
ç ö 

ø i
å

µ
å

2

Error space for a network with a single layer of synaptic weights
(perceptron, Rosenblatt, 1962)

EW

weight space

before
learning

after
learning

Error (loss) function
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input/output space

class A
class B

Perceptrons can solve only problems whose input/output 
space is linearly separable.

Several real world problems are not linearly separable.

Linear Separability

Example of
XOR problem
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• Multi-layer neural networks can solve problems that are not linearly separable 
• Hidden units re-map input space into a space which can be linearly separated 
by output units.

Multi-layer Perceptron (MLP)

Each hidden unit draws a line

Output units “look” at regions (in/out)
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• Multi-layer networks should not use linear output functions because a linear 
transformation of a linear transformation remains a linear transformation.
• Therefore, such a network would be equivalent to a network with a single layer

Output Function in MLP

F x( ) = 1
1+ e- kx

For example, sigmoid function
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In a multilayer network, what is the error of the 
hidden units? This information is needed to change 
the weights between input units and hidden units.

In a simple perceptron, it is easy to change the weights to minimize the 
error between output of the network and desired output.

F Ai( ).
=d i ti - yi( ) in the case of non-linear 

output functions, add derivative of output

y,  t =d i ti - yi Δwij = ηδ ix j
i

j

Back-propagation of Error

The idea suggested by Rumelhart et al. in 1986 is to propagate the error of the 
output units backward to the hidden units through the connection weights:

Once we have the error for the hidden units, we 
can change the lower layer of connection weights 
with the same formula used for the upper layer.

d j =F Aj( ) wijd i
i
å

.
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Algorithm

1. Initialize weights (random, around 0)

2. Present pattern

3. Compute hidden

4. Compute output

5. Compute delta output

6. Compute delta hidden

7. Compute weight change

8. Update weights

€ 

xk
µ = sk
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µ − yi
µ( )

€ 

δ j
µ = h j

µ 1− h j
µ( ) wijδi

µ

i
∑

€ 

δi
µ = yi

µ 1− yi
µ( ) tiµ − yiµ( )

€ 

Δwij
µ = δi

µh j
µ , Δv jk

µ = δ j
µxk

µ

€ 

wij
t = wij

t−1 +ηΔwij
µ , v jk

t = v jk
t−1 +ηΔv jk

µ

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 
Dario Floreano and Claudio Mattiussi, MIT Press 51



Error space can be complex in multilayer networks: local minima and 
flat areas

weight space

Ew

Using Back-Propagation

1. Large learning rate: take large steps in the direction of the gradient descent

1
2

2. Momentum: add direction component from last update

€ 

Δwij
t =ηδi +αΔwij

t−1

3

3. Additive constant: keep moving when no gradient

€ 

δi
µ = ˙ Φ + k( ) tiµ − yiµ( )
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Solution: Use a Validation Set

Divide available data into: 
- training set (for weight update)
- validation set (for error monitoring)
Stop training when error for validation 
set starts growing

Over-fitting
Overfitting training data leads to 
poor generalisation

Overfitting can derive from too
many weights and/or too long 
learning of training patterns
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Time Series
Extraction of time-dependent features is necessary for time-series analysis

a

b

c

d
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a-b-c (t-1) a-b-c (t) a-b-c (t+1) a-b-c (t) a-b-c (t)

d (t) d (t) d (t)

memory
units

memory
unit

Time Delay Neural Network Elman Network Jordan Network



[Sejnowski & Rosenberg, 1987]

A neural network that learns to 
read aloud written text:
•7 x 29 input units encode characters 
within a 7-position window(TDNN)
•26 output units encode english 
phonemes
•approx. 80 hidden units

Training on 1000-word text, reads 
any text with 95% accuracy

Learns like humans: 
segmentation, bla-bla, short 
words, long words

NETtalk
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landmine detection
Tufts University

The human brain recognizes millions of smell types by combining responses of only 
10,000 receptors. Smell detection is a multi-billion industry (food, cosmetics, medicine, 
environment monitoring...). Human detection: costly, fatigue, history, aging, subjective.

food quality
Pampa Inc.

tubercolosis diagnosis
Cranfield University

Chemical sensors of volatile molecules

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 
Dario Floreano and Claudio Mattiussi, MIT Press 56



[Keller et al., 1994]

Substance recognition from chemical sensors
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Deep vs. shallow neural networks

Not all connections are shown

Compact distributed encoding (smallest possible number of computing elements) = better generalization

Compared to compact network of k layers, a network of k-1 layers requires exponentially larger number 
of computing elements to achieve same learning error, and therefore has worse generalisation

3 layers of connections

2 layers of connections

“deep”

“shallow”



Backpropagation in deep networks

Backpropagation yields poor results when applied to 
networks of many layers (k>3)

The problem lies in poor gradient estimation in the 
lower layers of the neural network, leading to smaller 
gradients and thus small weight modifications

Not all connections are shown

d j =F Aj( ) wijd i
i
å
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Features

What do they have in common? 



“Deep learning”, one layer at a time
Unsupervised training of low layers to generate structure of increasingly complex representations + 

Supervised training of top layer

pixels edges object parts object models

Specific person

recognition

unsupervised supervised
input output

Hinton, Osindero, Teh, 2006 
Bengio, Lamblin, Popovici, Larochelle, 2007 
Ranzato, Poultney, Chopra, LeCun, 2007
See online also Learning Deep Architectures for AI by Yoshua Bengio, 2008



Unsupervised learning with autoencoders
PCA are not good for unsupervised learning in deep networks because PCA is a linear transformation

Input units 

encoding units 

output units

h

y

x

t=x

supervised learning
(e.g., BackProp)

Autoencoders are supervised networks (e.g., Back-prop) that learn to 
reproduce the input pattern on the output layer. Usually, they have 
smaller set of hidden units (encoding units) to generate a compressed 
representation, which spans the same space of PCA representation, 
but can use non-linear units.

Not all connections are shown



Denoising Autoencoders (dropout)
Identity coding problem arises when encoding units are equal or larger than input units

To prevent identity encoding, use denoising autoencoders (Vincent et al. 2008): corrupt input by 
randomly switching off 50% of units while keeping teaching output equal to uncorrupted input

original input 

corrupted input 

encoding units 

output units

x’

h

y

x

t=x

supervised learning
(e.g., BackProp)

Not all connections are shown



















Target tOutput y

Supervised training of top layer

training

no training



Target tOutput y

Supervised fine tuning of entire network

training



Convolutional Neural Networks
Instead of training weights from all input units to each detector (filter), as autoencoders 
do, train only weights from few neighboring input units to each detector and convolve 

image to generate activations of the next layer

connection weights



1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2

……
Each filter is a local detector

Filter convolution for 2D images



1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

3 -1

stride=1

Dot 
product



1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

3 -3

If stride=2



1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1



1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for each filter
stride=1

Feature
Map



Image Convolution block

x

y

x

y

d

x = image coordinate
y = image coordinate
d = convolutions (different filters)

Add non-linearity to each value 
in the block, e.g. ReLU function
(Rectified Linear Unit)



5 5 0 0 0 1
0 3 0 7 1 8
0 1 1 2 5 0
1 0 5 0 1 0
0 4 9 0 5 0
3 0 1 0 1 0

5 7
9 5

Subsampling by pooling

1.6 2.7

2.5 0.7

Max pool 
3x3, stride 3

Mean pool 
3x3, stride 3



Typical Convolutional Neural Network

https://en.wikipedia.org/wiki/Convolutional_neural_network
Image by Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45679374

Filters are learned to minimize the error (loss) function of the output

robot
dog
pigeon
human
car
…

training



Learning object classification and positions

S. Ren, K. He, R. Girshick and J. Sun (2017), IEEE Transactions on Pattern Analysis and Machine 
Intelligence, doi: 10.1109/TPAMI.2016.2577031.



Bird detection and deterrence on buildings

• City pigeon excrements damage buildings and facades
• Cleaning and repair cost up to 1.1 billion USD per year in USA (Pimentel et al, 2000)
• Pigeon droppings are reservoirs of dangerous zoonotic pathogens (Haag-Wackernagel, 2004)

SwissTech building, EPF Lausanne



Current solutions

Wang Z. and
Wong K.C., 2018 Credit: Warren Kovach / Alamy Stock PhotoBird-X.com

• Require human operator, or
• Are too loud for operation in urban environment, or
• Are dangerous for animals, or
• Are ineffective



Parrot Anafi



F. Schiano, D. Natter, D. Zambrano and D. Floreano (2022) Autonomous Detection and Deterrence of 
Pigeons on Buildings by Drones, IEEE Access, 10, 1745-1755, doi: 10.1109/ACCESS.2021.3137031.



> 96% precision



Without drone system, pigeon flock stay on roof up to 3 hours
With drone system, pigeon flock stays up to 4 minutes  


