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Recap - Reinforcement learning objective

◦ Reinforcement Learning: Sequential decision making in unknown environment

◦ Markov decision process: M = (S,A, P, r, µ, γ)

◦ Stationary stochastic policy π : S → ∆(A), at ∼ π(·|st)

◦ State-value function: V π(s) := E

[∑∞
t=0 γ

tr(st, at)|s0 = s, π

]
◦ Performance objective: maxπ(1− γ)

∑
s∈S µ(s)V π(s)

Challenges: ◦ Infer long-term consequences based on limited, noisy short-term feedback.

◦ Unknown dynamics - Knowledge only through sampled experience.

◦ Large state and actions spaces.

◦ Highly nonconvex objective.
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Motivation

◦ Approximate dynamic programming

I Attempting to find approximate fixed-point solutions to the (nonlinear) Bellman equation.

I Pros:

+ Well studied setting for tabular MDPs that comes with theoretical convergence guarantees.

I See Lectures 2 and 3.

+ Deep-learning variants (e.g., DQN [18]) are powerful.

I Cons:

– Training can oscillate or even diverge under the simplest parameterizations or in offline settings.

I For divergent examples for TD-learning with nonlinear parameterizations, see e.g., Ex 6.6 and 6.7 in [3].

I For divergent example for approximate VI with linear parameterizations, see e.g., Ex. 6.11 in [3].

– Incompatible with classical machine-learning tools that are rooted in convex optimization.
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Motivation (cont.)

◦ The linear programming approach

I Introduces an alternative convex viewpoint that formulates the RL problem as a linear program.

I Overviews recent scalable algorithms with theoretical guarantees rooted in the LP approach.

I Highlights how historical key limitations have been eliminated.
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Revisit Bellman optimality equation

◦ Finding V ? satisfying Bellman optimality equation can be written as a feasibility problem:

min
V

0

s.t. V (s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V (s′)

]
, ∀ s ∈ S.

◦ The only feasibile point is V ?.

◦ The above constraint suggests that V ?(·) is the “least feasible solution" of V (·) satisfying

V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′), ∀ s ∈ S, a ∈ A.

◦ Note that the new constraints above is linear in V (·) =⇒ Linear Programming (LP) .
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Solving MDPs with LP - Primal LP formulation

Primal LP
Let µ(s) > 0, s ∈ S be the initial distribution (or any positive weights).

min
V

(1− γ)
∑
s∈S

µ(s)V (s)

s.t. V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′), ∀ s ∈ S, a ∈ A.
(P)

Remarks: ◦ The optimal value function V ? is the unique solution to the above LP.

◦ Number of decision variables: |S|, number of constraints: |S| × |A|.

◦ An optimal (deterministic) policy is the associated greedy policy

π?(s) ∈ arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ?(s)

]
. (1)

◦ The factor (1− γ) in the objective ensures that the dual variables are in the probability
simplex.
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Solving MDPs with LP - Primal LP formulation (cont.)

Corollary (LP Formulation and V ?)

V ? is the solution to the above LP formulation for any positive weights {µ(s)}.

Proof Sketch
◦ First, we establish that V ? is a feasible solution.
◦ Constraints hold for any a ∈ A, so choose a = π?(s), the deterministic stationary optimal policy.

◦ Hence, we have
(
I − γPπ?

)
V ? ≥ Rπ? .

◦ Then, we need to show that V ? minimizes the objective.
◦ By the monotonicity property of the Bellman operator, we get that V ≥ V ?, for any feasible V .

Remark: ◦ When we introduce function approximations, the quality of the approximate minimizer V
depends on the choice of the positive weights {µ(s)} (see Slide 19).
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A closer look at the primal LP

Recall: Primal LP
Let µ(s) > 0, s ∈ S be the initial distribution (or any positive weights).

min
V

(1− γ)
∑
s∈S

µ(s)V (s)

s.t. V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′), ∀ s ∈ S, a ∈ A.
(P)

Observations: ◦ Any V ? is feasible as

V
?(s) = T V ?(s) ≥ r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ?(s′), ∀a ∈ A.

This implies feasibility.

◦ For any feasible V , we have V ≥ T V . By monotonicity of the Bellman operator T , we have

V ≥ T V ≥ T 2
V ≥ · · · ≥ T∞V = V

?
.

This implies optimality.
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Solving MDPs with dual LP

Dual LP formulation

max
λ≥0

∑
s∈S

∑
a∈A

r(s, a)λ(s, a)

s.t.
∑
a∈A

λ(s, a) = (1− γ)µ(s) + γ
∑

s′∈S,a′∈A

P(s|s′, a′)λ(s′, a′), ∀ s ∈ S. (D)

Remarks: ◦ The number of decision variables: |S| × |A|.

◦ The number of constraints: |S|+ |S| × |A|.

◦ The constraints implicitly implies the decision variables are in the probability simplex.

◦ The solution to the dual LP, λ?, corresponds to the state-action occupancy of π?.
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Dual interpretation

◦ For any policy π and s0 ∼ µ, define the state-action visitation distribution λπ(s, a) as

λπ(s, a) := (1− γ)
∞∑
t=0

γtP(st = s, at = a | s0 ∼ µ, π)

◦ We can write

(1− γ)Es∼µ[V π(s)] = (1− γ)E
[∑∞

t=0
γtr(st, at) | s0 ∼ µ

]
⇒ primal objective (P)

= (1− γ)
∑

s∈S,a∈A

∞∑
t=0

γtP(st = s, at = a | s0 ∼ µ, π)r(s, a)

=
∑
s∈S

∑
a∈A

λπ(s, a)r(s, a) ⇒ dual objective (D)

◦ Easy to verify that λπ(s, a) satisfies the constraints in the dual LP.
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A closer look at the dual LP
Recall: Dual LP

max
λ

∑
s∈S

∑
a∈A

r(s, a)λ(s, a)

s.t.
∑
a∈A

λ(s, a) = (1− γ)µ(s) + γ
∑

s′∈S,a′∈A

P(s|s′, a′)λ(s′, a′), ∀ s ∈ S,

λ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A.

(D)

Observations: ◦ For any policy π and s0 ∼ µ, define the state-action visitation distribution

λπ(s, a) := (1− γ)
∑∞

t=0
γtP(st = s, at = a |π, s0 ∼ µ).

By Markov property, we have (see supplementary material for details)

λπ(s, a) = µ(s)π(a|s) + γ
∑
s′,a′

π(a|s)P(s|s′, a′)λπ(s′, a′).

Summing over a implies feasibility.
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A closer look at the dual LP

Dual LP

max
λ

∑
s∈S

∑
a∈A

r(s, a)λ(s, a)

s.t.
∑
a∈A

λ(s, a) = (1− γ)µ(s) + γ
∑

s′∈S,a′∈A

P(s|s′, a′)λ(s′, a′), ∀ s ∈ S,

λ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A.

(D)

Observation: ◦ We can show the objective equivalence of (P) and (D):

(1− γ)
∑
s∈S

µ(s)V π(s) = (1− γ)E

[
∞∑
t=0

γtr(st, at) |π, s0 ∼ µ

]
m∑

s∈S

∑
a∈A

r(s, a)λπ(s, a) = (1− γ)
∑

s∈S,a∈A

∞∑
t=0

γtP(st = s, at = a |π, s0 ∼ µ)r(s, a).
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A closer look at the dual LP (cont.)

Dual LP

max
λ

∑
s∈S

∑
a∈A

r(s, a)λ(s, a)

s.t.
∑
a∈A

λ(s, a) = (1− γ)µ(s) + γ
∑

s′∈S,a′∈A

P(s|s′, a′)λ(s′, a′), ∀ s ∈ S,

λ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A.

(D)

Observations: ◦ For any λ feasible to the dual LP, we can define a policy

πλ(a | s) =
λ(s, a)∑
a∈A λ(s, a)

.

It then holds λπλ = λ.

◦ Note that λ?(s, a) = λπ
? (s, a) and π?(a | s) = λ?(s,a)∑

a∈A
λ?(s,a)

. (self-check)

◦ Optimal policy does not depend on µ. (LP sensitivity analysis)
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Finding the optimal policy

◦ Primal LP approach:
I Solve primal LP to obtain for the optimal value function V ?

I Then construct the optimal policy (deterministic) through the greedy policy

π?(s) ∈ arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ?(s′)
]
.

◦ Dual LP approach:
I Solve the dual LP to obtain the optimal state-action occupancy λ?

I Then construct the optimal policy (randomized) by

π?(a | s) =
λ?(s, a)∑
a∈A λ

?(s, a)
.

◦ Reference: [Puterman 1994] [25] (Section 6.9)
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Dynamic programming vs Linear programming (exact solutions)

Algorithm Component Output

Value Iteration (VI) Bellman Optimality Operator T V ? (control)

Policy Iteration (PI) (Multiple) Bellman Operator T π + Greedy Policy π? (control)

Linear Programming (LP) LP solver (Simplex, Interior Point Method) V ?, π? (control)

Dynamic Programming:
◦ Simple iterative updates.
◦ Polynomial complexity in |S| and |A|.
◦ Works better for small problems.

Linear Programming:
◦ Rich library of fast LP solvers.
◦ Polynomial complexity in |S| and |A|.
◦ Works better for large problems.
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The LP approach - Pros and Cons

◦ Why is this useful?

I Defining optimality is simple: no value functions, no fixed-point equations, just the numerical objective.

I Easily comprehensible with an optimization background.

I A disciplined convex optimization template with a rich set of algorithms.

◦ End User License Agreement:

I Need to ensure
∑

a∈A λ(s, a) > 0 to extract a policy.

I Number of variables is large.

I Intractable number of constraints.

I Constraints may be not satisfied when working with function approximators.
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Beyond exact solutions - A bit of history of approximate linear programming (ALP)

◦ [Manne 1960] [17]

I Formulated the primal LP over value functions and showed equivalence to Bellman equations.

◦ [Borkar 1988] [4] and [Hérnandez-Lerma & Lasserre 1996, 1999] [11, 12]

I Studied the LP approach to MDPs with continuous state and action spaces.

I The corresponding LPs are infinite-dimensional.

◦ [Schweitzer & Seidman 1982] [29]

I Proposed linear function approximators to reduce the number of decision variables

I Proposed a relaxation to reduce the number of constraints.

◦ [De Farias & Van Roy 2003, 2004] [7, 8]

I Analyzed the reduction [Schweitzer & Seidman 1982] [29].

I Inspired some follow-up work in RL [Petrik et al. 2009,2010] [23, 22], [Desai et al. 2012] [9],
[Abbasi-Yadkori et al. 2014] [1], [Lakshminarayanan et al. 2018] [15].
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Prior works in ALP - Linear function approximation

Large-scale MDPs⇒ Large-scale optimization

◦ Reduce the number of decision variables by projecting onto a lower-dimensional subspace.

I Let φ1, . . . , φk : S → R be k basis functions (or features).

I Φ :=
[
φ1 . . . φk

]
∈ R|S|×k is the corresponding feature matrix.

I The (ALP) is obtained by adding the linear constraint V = Φθ =
∑k

i=1 θiφi to the original primal LP (P).

Approximate linear program [Schweitzer & Seidman 1982]

min
θ∈Rk

(1− γ)
∑
s∈S

µ(s)(Φθ)(s)

s.t. (Φθ)(s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)(Φθ)(s′), ∀ s ∈ S, a ∈ A.
(ALP)
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Prior works in ALP - Linear function approximation (cont.)

Assumptions: ◦ The set {φ1, . . . , φk} is linearly independent.

◦ 1 ∈ span
(
{φ1, . . . , φk}

)
:= {Φθ | θ ∈ Rd}. This ensures that (ALP) is feasible [7] .

◦ The values
∑

s′∈S P(s′|s, a)φi(s′) and µᵀφi, i = 1, . . . , k, can be accessed in O(1) time.

Quality of the approximate solution (Th.2 in [De Farias & Van Roy 2003] [7])

‖V ? − V ?ALP‖1,µ ≤
2

1− γ
min
θ
‖V ? − Φθ‖∞.︸                        ︷︷                        ︸

εapprox: approximation error

Notation: ◦ θ?ALP is optimal to (ALP) and V ?ALP = Φθ?ALP is the approximate value function.

◦ ‖V ‖1,µ :=
∑

s∈S µ(s)|V (s)| is the µ-weighted `1-norm, where µ > 0.

◦ Φθ? is the ‖ · ‖∞-norm projection of V ? to the subspace V = Φθ.

◦ εapprox := minθ ‖V ? − Φθ‖∞ = ‖V ? − Φθ?‖∞ is called the approximation error.
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Prior works in ALP - Linear function approximation (cont.)

Quality of the approximate solution

‖V ? − V ?ALP‖1,µ ≤
2

1− γ
εapprox.

Remarks:

◦ εapprox = minθ ‖V ? − Φθ‖∞ captures the
approximation power of the feature map.

◦ If V ? ∈ span
(
φ1, . . . , φk

)
, then V ? = Φθ?ALP.

◦ In general, ‖V ? − V ?ALP‖1,µ = O(εapprox).

◦ Focus on finding a good basis, leaving the search
of the “right” weights to an LP solver.

V [s1]

V [s2]

V ?ALP = Φθ?ALP

Φθ?

V ?

Figure: Graphical interpretation of ALP [7]
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Prior works in ALP - Constraint sampling
◦ Reduce the number of constraints by constraint sampling.

I (x, a) is treated as an uncertainty parameter.

I S ×A is the uncertainty space.

I P is a probability distribution on S ×A.

I {(si, ai)}Ni=1 i.i.d. samples on (S ×A,P).

I N ⊂ Rk is a bounding set.

I The relaxed LP (RLP) is obtained from (ALP) by considering only the N sampled constraints, and
restricting θ ∈ N .

Relaxed linear program [De Farias & Van Roy 2001] [8]

min
θ∈N

(1− γ)
∑
s∈S

µ(s)(Φθ)(s)

s.t. (Φθ)(si) ≥ r(si, ai) + γ

∑
s′∈S

P(s′|si, ai)(Φθ)(s′), ∀ i = 1, . . . , N.
(RLP)
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Prior works in ALP - Constraint sampling (cont.)

Assumptions: ◦ The set N ⊂ Rk is compact, i.e., bounded and closed.

◦ The optimal solution θ?ALP to (ALP) is in N .

◦ The sampling probability distribution is P = λπ
? , i.e., the state-action visitation

distribution induced by an optimal policy π?.

How many samples give a good solution (Th.3.1 in [De Farias & Van Roy 2004] [8])
Let ε, δ ∈ (0, 1). If N ≥ Õ

( 4k log( 1
δ

)
(1−γ)ε

supθ∈N ‖V
?−Φθ‖∞

µᵀV ?

)
, then with probability at least 1− δ, we have

‖V ? − V ?RLP‖1,µ ≤ ‖V
? − V ?ALP‖1,µ + ε‖V ?‖1,µ,

where the probability is taken over the random sampling of constraints.

Notation: ◦ θ?RLP is optimal to (RLP) and V ?RLP = Φθ?RLP is the approximate value function.

◦ ε ∈ (0, 1) is the desired approximation accuracy.

◦ δ ∈ (0, 1) is the desired confidence level.
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Prior works in ALP - Constraint sampling (cont.)

Remarks: ◦ (RLP) is a relaxation of (ALP).

◦ The constraint θ ∈ N ensures that that the optimal value of (RLP) is bounded.

◦ The relaxed linear program (RLP) is random.

◦ θ?RLP and V ?RLP = Φθ?RLP are random variables.

◦ A lower bound on the number of samples needed to achieve an ε-accurate solution with
probability at least 1− δ, is called the sample complexity of the problem.

◦ The sample complexity bound depends on the choice of the bounding set N .

◦ The sample complexity bound requires access to samples from the optimal state-action
visitation distribution (which is not known a priori).
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Common theme of all prior ALP works

◦ Reduce the number of decision variables by projecting on a low-dimensional subspace.

◦ Reduce the number of constraints (e.g., by constraint sampling).

◦ Solve the resulted LP with generic solver.

◦ Analyze the quality of the approximate solution.

◦ Either scale badly with the size of the state-action spaces or

◦ Require access to samples from a distribution that depends on the optimal policy.

◦ Require knowledge of dynamics or access to a simulator.

◦ Focus mainly on the approximation of the optimal value but not so much on the near optimal policy.

Is this the best we can do?
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Some notation: towards an unconstrained problem.

◦ We will write an equivalent unconstrained problem.

◦ To simplify the notation we need to introduce a couple of operators:
I E : RS×A → RS such that (EV )(s, a) = V (s).
I P : RS×A → RS such that (PV )(s, a) =

∑
s′
P(s′|s, a)V (s′).

◦ Their adjoint are:
I ET : RS → RS×A such that (ETλ)(s) =

∑
a
λ(s, a).

I PT : RS → RS×A such that (PTλ)(s′) =
∑

s,a
P(s′|s, a)λ(s, a).
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Linear Programming - Summary

Primal LP:
min

V ∈R|S|
(1− γ)〈µ, V 〉

s.t. EV ≥ r + γPV .
(P)

◦ Primal LP over value functions

◦ |S| decision variables and |S||A| constraints

◦ ∀ V primal feasible ⇒ V ? ≤ V

◦ Optimal value function V ? is the optimizer

◦ Optimal policy is the associated greedy policy

Dual LP
max

λ∈R|S||A|
〈λ, r〉

s.t. Eᵀλ = (1− γ)µ+ γP ᵀλ, λ ≥ 0.
(D)

◦ Dual LP over occupancy measures

◦ |S||A| variables and |S|+ |S||A| constraints

◦ ∀ policy π, the induced λπ is dual feasible

◦ ∀ feasible λ ⇒ πλ has occupancy measure λ

◦ We have λ? = λπ
? and π? = πλ?
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Towards the Lagrangian

◦ Instead of working solely with the primal or dual LP formulation, we work with an object between them

◦ Introducing the Lagrangian multipliers vector λ ∈ R|S||A|, we can write the Lagrangian as follows:

Primal LP:
min

V ∈R|S|
(1− γ)〈µ, V 〉

s.t. EV ≥ r + γPV .
(P)

Dual LP
max

λ∈R|S||A|
〈λ, r〉

s.t. Eᵀλ = (1− γ)µ+ γP ᵀλ, λ ≥ 0.
(D)

m

Saddle point formulation

min
V

max
λ≥0

(1− γ)
∑
s∈S

〈µ , V 〉+ 〈λ , r + γPV + EV 〉. (Saddle-point problem)
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Minimax optimization

Bilinear min-max template

min
x∈X

max
y∈Y

f(x) + 〈Ax,y〉 − h(y),

where X ⊆ Rp and Y ⊆ Rn.
I f : X → R is convex.
I h : Y → R is convex.

Convex-concave min-max template

min
x∈X

max
y∈Y

Φ(x,y), (2)

where Φ(x,y) is convex in x and concave in y.
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Basic algorithms for minimax
◦ Given minx∈X maxy∈Y Φ(x,y), define V (z) = [∇xΦ(x,y),−∇yΦ(x,y)] with z = [x,y].

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

GDA
OGDA
EG
PP
Critical point

Figure: Trajectory of different algorithms for a simple bilinear game minx maxy xy.

◦ (In)Famous algorithms
I Gradient Descent Ascent (GDA)
I Proximal point method (PPM)
I Extra-gradient (EG)
I Optimistic Gradient Descent Ascent (OGDA)
I Reflected-Forward-Backward-Splitting (RFBS)

◦ EG and OGDA are approximations of the PPM
I zk+1 = zk − ηV (zk).
I zk+1 = zk − ηV (zk+1).
I zk+1 = zk − ηV (zk − αV (zk−1))
I zk+1 = zk − η[2V (zk)− V (zk−1)]
I zk+1 = zk − ηV (2zk − zk−1)
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Primal-dual π-learning

Saddle point formulation

min
V

max
λ∈∆S×A

(1− γ)
∑
s∈S

〈µ , V 〉+ 〈λ , r + γPV + EV 〉. (Saddle-point problem)

◦ For know dynamic, it can be solved via primal-dual updates:

I Vk+1 = Vk − η
(
(γP − E)ᵀλk + µ

)
.

I λk+1 = λk � eη(r+γPVk−EVk), where � denotes entry wise multiplication.

◦ Gradients are expectations under µk and P

⇒ efficient stochastic implementation [Chen et al. 2018] [6], [Jin & Sidford. 2018] [13].

I State-of-the art sample complexity for solving small MDPs.

I O
(
|S||A| log( 1

δ
)

(1−γ)4ε2

)
samples for finding an ε-optimal policy with probability at least 1− δ.
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Scaling up

Large-scale MDPs⇒ Large-scale optimization

◦ Parameterize λ and V via linear functions

I λν = Ψν, for some feature matrix Ψ ∈ R|S|A||×n

I Vθ = Φθ, for some feature matrix Φ ∈ R|S|×m

Relaxed saddle point formulation

min
θ

max
ν∈∆[n]

(1− γ)
∑
s∈S

〈µ , Φθ〉+ 〈λ , Ψᵀ(r + γPΦθ + EΦθ)〉
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Scaling up (cont.)

Relaxed saddle point formulation

min
θ

max
ν∈∆[n]

(1− γ)
∑
s∈S

〈µ , Φθ〉+ 〈λ , Ψᵀ(r + γPV + EV )〉

◦ Primal-dual updates:

I θk+1 = V θk − η
(
(γPΦ− EΦ)ᵀΨνk + Φᵀµ

)
,

I νk+1 = νk � eηΨᵀ(r+γPΦθk−EΦθk).

◦ Implementable with only sample access to the columns of Ψ and the transition law P [Chen et al. 2018] [6].

I O
(
nm log( 1

δ
)

(1−γ)4ε2

)
samples for finding an ε+ εapprox-optimal policy with probability at least 1− δ.

I εapprox captures the expressivity of the approximation architecture.
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Proximal point method (PPM)

◦ Consider the following smooth unconstrained optimization problem: minx∈Rp f(x)

Proximal point method for convex minimization.
For a step-size τ > 0, PPM can be written as follows

xk+1 = arg min
x∈Rp

{
f(x) +

1
2τ
‖x− xk‖2

}
:= proxτf (xk) (3)

Observations: ◦ The optimality condition of (3) reveals a simpler PPM recursion for smooth f :

xk+1 = xk − τ∇f(xk+1).

◦ PPM is an implicit, non-practical algorithm since we need the point xk+1 for its update.

◦ Each step of PPM can be as hard as solving the original problem.

◦ Convergence properties are well understood due to Rockafellar [28].
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PPM and minimax optimization

PPM applied to the minimax template: minx∈Rd maxy∈Rn Φ(x,y)
Define z = [x,y]> and V(z) = [∇xΦ(x,y),−∇yΦ(x,y)]>. PPM iterations with a step-size τ > 0 is given by

zk+1 = zk − τV(zk+1).

Derivation: ◦ For τ > 0, (xk+1,yk+1) is the unique solution to the saddle point problem,

min
x∈Rd

max
y∈Rn

Φ(x,y) +
1
2τ
‖x− xk‖2 −

1
2τ
‖y− yk‖2 (4)

◦ Writing the optimality condition of the update in (4)

xk+1 = xk − τ∇xΦ(xk+1,yk+1), yk+1 = yk + τ∇yΦ(xk+1,yk+1) (5)

Observation: ◦ PPM is an implicit algorithm.

◦ For the bilinear problem, PPM is implementable!
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Proximal point methods in the Bregman setup

Definition: Bregman distance
Let ω : X → R be a distance generating function where ω is 1−strongly convex w.r.t. some norm ‖ · ‖ on the
underlying space and is continuously differentiable. The Bregman distance induced by ω(·) is given by

Dω(z, z′) = ω(z)− ω(z′)−∇ω(z′)>(z− z′).

◦ The proximal point method in the Bregman setup reads as follows:

xk+1 = arg min
x∈Rp

{
f(x) +

1
τ
Dω(x,xk)

}
Remarks: ◦ Choosing the negative entropy as a generating function ω(x) = 〈x, log x〉, we obtain the

KL divergence. Such ω(x) is 1-strongly convex in ‖ · ‖1 norm.

◦ This choice will allow to avoid projection in the simplex constraints and it improves the
dependence on the domain dimension.

◦ Now, we will see PPM in action on the Lagrangian.
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REPS: a success story

◦ REPS is widely popular in the robotics community.

◦ It is an application of proximal point to the Dual LP.

◦ A robot trained with REPS manages to play table tennis.

Figure: Source: Relative Entropy Policy Search [21]
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Towards REPS: proximal point on the Dual LP

◦ Recall: Proximal point is an general implicit method.

◦ However, for a linear objective PPM can be implemented.

◦ Hence, we can apply proximal point updates on the Lagrangian that is just a bilinear form.

Recall: Dual LP

λk = argmaxλ∈∆〈λ, r〉

s.t. ETλ = γPTλ+ (1− γ)µ.

Remarks: ◦ The problem in the current form suffers from |S| many constraints.
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The Lagrangian: towards an unconstrained problem.

◦ The corresponding Lagrangian is:

max
λ∈∆

min
V
〈λ, r〉+ 〈V, γPTλ− ETλ〉+ (1− γ)〈V, µ〉.

◦ Applying proximal point we obtain the following update:

λk = argmaxλ∈∆ min
V
〈λ, r〉+ 〈V, γPTλ− ETλ〉+ (1− γ)〈V, µ〉︸                                                                    ︷︷                                                                    ︸

:=f(λ)

−
1
η
DKL(λ, λk−1).

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 39/ 62



KKT conditions on the Lagrangian update.

Derivation: ◦ We notice by convexity of the Bregman divergence that the update is convex in λ.

◦ We introduce an auxiliary problem for any V as follows:

λVk = argmaxλ∈∆ 〈λ, r〉+ 〈V, γPTλ− ETλ〉+ (1− γ)〈V, µ〉 −
1
η
DKL(λ, λk−1).

◦ By optimality conditions, it must hold

r + γPV − EV −
1
η
∇λDKL(λVk , λk−1) = 0.

◦ Thus, λVk can be computed in closed form for any V :

λVk (s, a) =
λk−1(s, a)er(s,a)+γ(PV )(s,a)−(EV )(s,a)∑
s,a

λk−1(s, a)er(s,a)+γ(PV )(s,a)−(EV )(s,a) .
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The unconstrained problem

◦ We can leverage the KKT conditions to write an unconstrained problem where the only decision variable is V :

min
V
〈λVk (s, a), r〉+ 〈V, γPTλVk (s, a)− ETλVk (s, a)〉+ (1− γ)〈V, µ〉 −

1
η
DKL(λVk (s, a), λk−1).

◦ With some calculus, we have the following compact form.

Unconstrained problem (REPS)

Vk = min
V

(1− γ)〈µ, V 〉+
1
η

log
∑
s,a

λk−1(s, a)er(s,a)+γ(PV )(s,a)−(EV )(s,a).

Remarks: ◦ The decision variable V has dimension |S|.

◦ The objective is convex and smooth, its gradient is Lipschitz continuous.
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The REPS algorithm [21]

Algorithm: REPS
Initialize λ0, for exemple uniform.
for each iteration k = 1, . . . ,K do
Solve the problem

Vk = min
V

(1− γ)〈µ, V 〉+
1
η

log
∑
s,a

λk−1(s, a)er(s,a)+γ(PV )(s,a)−(EV )(s,a)

Update the occupancy measure:

λk(s, a) ∝ λk−1(s, a)er(s,a)+γ(PVk)(s,a)−(EVk)(s,a)

end for
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Sample complexity of REPS [20]

Algorithm Oracle Output

REPS Exact gradient O
(
|S|3/2

(1−γ)2ε2

)
REPS Stochastic Biased Gradients O

(
|S|3/2

(1−γ)8β2ε8

)
Remarks: ◦ The exact gradient case achieves the best known sample complexity, e.g. comparable to

NPG (see Lecture 6)

◦ The sample complexity with stochastic gradients degrades.

◦ For the stochastic gradient case, one needs to assume that λk(s, a) ≥ β > 0. It solves the
exploration problem by assumption.
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Supplementary

LP and optimization
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Supplementary Material: Bellman Equation for State-action Visitation Distribution

Recall the definition
λπ(s, a) :=

∑∞

t=0
γtP (st = s, at = a |π, s0 ∼ µ).

Bellman Equation for λπ

λπ(s, a) = µ(s)π(a|s) + γ
∑
s′,a′

π(a|s)P (s|s′, a′)λπ(s′, a′).
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Supplementary Material: Bellman Equation for State-action Visitation Distribution

Proof.

λ
π(s, a)

=P (s0 = s, a0 = a) +
∑∞

t=1
γ
t
P (st = s, at = a|π, s0 ∼ µ)

=µ(s)π(a|s) +
∞∑
t=1

γ
t
∑
s′,a′

P (st = s, at = a|st−1 = s
′
, at−1 = a

′
, π, s0 ∼ µ)P (st−1 = s

′
, at−1 = a

′|π, s0 ∼ µ)

=µ(s)π(a|s) + γ

∞∑
t=1

P (st = s, at = a|st−1 = s
′
, at−1 = a

′)P (st−1 = s
′
, at−1 = a

′|π, s0 ∼ µ)

=µ(s)π(a|s) + γ

∞∑
t=1

π(a|s)P (s|s′, a′)
∞∑
t=1

γ
t−1

P (st−1 = s
′
, at−1 = a

′|π, s0 ∼ µ)

=µ(s)π(a|s) + γ
∑
s′,a′

π(a|s)P (s|s′, a′)λπ(s′, a′)

where the third equality is due to Markov property. �
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PPM guarantees for minimax optimization

Theorem (Convergence of PPM [28])
Suppose (xk,yk) be the iterates generated by PPM (i.e., (5)), then for the averaged iterates, it holds that∣∣∣∣∣Φ

(
1
K

K∑
k=1

xk,
1
K

K∑
k=1

yk
)
− Φ(x?,y?)

∣∣∣∣∣ ≤ ‖x0 − x?‖2 + ‖y0 − y?‖2

τK
.

Theorem (Linear convergence [28])
Suppose (xk,yk) be the iterates generated by (5), Φ(·, ·) is µx−strongly convex in x and µy−strongly concave
in y. Let µ = max{µx, µy}. Then, for any τ > 0, (xk,yk) satisfies the following

rk+1 ≤
1

1 + µτ
rk,

where rk = ‖xk − x?‖2 + ‖yk − y?‖2.

Remark: ◦ Still need an implementable and convergent algorithm beyond the stylized bilinear case.

◦ Note what happens when τ →∞.
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Extra-gradient algorithm (EG) [14]

EG method for saddle point problems
1. Choose x0,y0 and τ .
2. For k = 0, 1, · · · , perform:

x̃k := xk − τ∇xΦ(xk,yk),
ỹk := yk + τ∇yΦ(xk,yk).
xk+1 := xk − τ∇xΦ(x̃k, ỹk).
yk+1 := yk + τ∇yΦ(x̃k, ỹk).

◦ Idea: Predict the gradient at the next point

zk+1 = zk − τV( zk − τV(zk)︸             ︷︷             ︸
prediction of zk+1

)
(EG)

Remark: ◦ 1-extra-gradient computation per iteration
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Extra-gradient algorithm: Convergence

Theorem (General case [10])
Let 0 < τ ≤ 1

L
. It holds that

I Iterates (xk,yk) remains bounded in a convex compact set.
I Primal-dual gap reduces: Gap

(
1
K

∑K

k=1 xk, 1
K

∑K

k=1 yk
)
≤ O

(
1
K

)
.

Theorem (Linear convergence [19])
Suppose (xk,yk) be the iterates generated by Extra-gradient algorithm, Φ(·, ·) is µx−strongly convex in x and
µy−strongly concave in y. Let µ = max{µx, µy}. Then, for τ = 1

4L , (xk,yk) satisfies,

rk+1 ≤
(

1−
1
cκ

)k
r0,

where rk = ‖xk − x?‖2 + ‖yk − y?‖2, κ = L
µ

is the condition number of the problem, and c is a constant
which is independent of the problem parameters.
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Optimistic gradient descent ascent algorithm (OGDA) [26]

OGDA for saddle point problems
1. Choose x0,y0,x1,y1 and τ .
2. For k = 1, · · · , perform:

xk+1 := xk−2τ∇xΦ(xk,yk)+τ∇xΦ(xk−1,yk−1).
yk+1 := yk+2τ∇yΦ(xk,yk)−τ∇yΦ(xk−1,yk−1).

previous gradient

zk+1

zk

current gradient

◦ Main difference from the GDA: Add a “momentum” or “reflection” term to the updates

zk+1 = zk − τ

[
V(zk) + (V(zk)−V(zk−1))︸                        ︷︷                        ︸

momentum

]
. (OGDA)

◦ Known as Popov’s method [24], it is also a special case of the Forward-Reflected-Backward method [16].

◦ It has ties to the Reflected-Forward-Backward Splitting (RFBS) method [5]:

zk+1 = zk − τV(2zk − zk−1). (RFBS)

Remark: ◦ Advanced material at the end: OGDA is an approximation of PPM for bilinear problems.
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OGDA: Convergence

Theorem (General case [10])
Let 0 < τ ≤ 1

2L , x1 = x0,y1 = y0. It holds that
I Iterates (xk,yk) remains bounded in a convex compact set.
I Primal-dual gap reduces: Gap

(
1
K

∑K

k=1 xk, 1
K

∑K

k=1 yk
)
≤ O

(
1
K

)
.

Theorem (Linear convergence [19])
Suppose (xk,yk) be the iterates generated by OGDA, Φ(·, ·) is µx−strongly convex in x and µy−strongly
concave in y. Let µ = max{µx, µy}. Then, for τ = 1

4L , (xk,yk) satisfies,

rk+1 ≤
(

1−
1
cκ

)k
r0,

where rk = ‖xk − x?‖2 + ‖yk − y?‖2, κ = L
µ

is the condition number of the problem, and c is a constant
which is independent of the problem parameters.
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?Bregman divergences

Table: Bregman functions ψ(x) & corresponding Bregman divergences/distances dψ(x,y)a.

Name (or Loss) Domainb ψ(x) dψ(x, y)

Squared loss R x
2 (x − y)2

Itakura-Saito divergence R++ − log x
x

y
− log

(
x

y

)
− 1

Squared Euclidean distance Rp ‖x‖22 ‖x − y‖22
Squared Mahalanobis distance Rp 〈x,Ax〉 〈(x − y),A(x − y)〉c

Entropy distance p-simplexd
∑
i

xi log xi

∑
i

xi log

(
xi

yi

)
Generalized I-divergence R

p
+

∑
i

xi log xi

∑
i

(
log

(
xi

yi

)
−
(
xi − yi

))
von Neumann divergence S

p×p
+ X log X −X tr (X (log X − log Y) −X + Y)e

logdet divergence S
p×p
+ − log det X tr

(
XY−1

)
− log det

(
XY−1

)
− p

a x, y ∈ R, x,y ∈ Rp and X,Y ∈ Rp×p.
b R+ and R++ denote non-negative and positive real numbers respectively.
c A ∈ Sp×p+ , the set of symmetric positive semidefinite matrix.
d p-simplexB {x ∈ Rp :

∑p

i=1 xi = 1, xi ≥ 0, i = 1, . . . , p}
e tr(A) is the trace of A.
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?Mirror descent [2]

What happens if we use a Bregman distance dψ in gradient descent?
Let ψ : Rp → R be a µ-strongly convex and continuously differentiable function and let the associated Bregman
distance be dψ(x,y) = ψ(x)− ψ(y)− 〈x− y,∇ψ(y)〉.
Assume that the inverse mapping ψ? of ψ is easily computable (i.e., its convex conjugate).
I Majorize: Find αk such that

f(x) ≤ f(xk) + 〈∇f(xk),x− xk〉+
1
αk

dψ(x,xk) := Qkψ(x,xk)

I Minimize

xk+1 = arg min
x

Qkψ(x,xk)⇒ ∇f(xk) +
1
αk

(
∇ψ(xk+1)−∇ψ(xk)

)
= 0

∇ψ(xk+1) = ∇ψ(xk)− αk∇f(xk)

xk+1 = ∇ψ∗(∇ψ(xk)− αk∇f(xk)) (∇ψ(·))−1 = ∇ψ∗(·)[27].

I Mirror descent is a generalization of gradient descent for functions that are Lipschitz-gradient in norms
other than the Euclidean.

I MD allows to deal with some constraints via a proper choice of ψ.
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?What to keep in mind about mirror descent?

• Approximates the optimum by lower bounding the function via hyperplanes at xt

x

f(x)

x?

• The smaller the gradients, the better the approximation!

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 59/ 62



?Mirror descent example

How can we minimize a convex function over the unit simplex?

min
x∈∆

f(x),

where
I ∆ := {x ∈ Rp :

∑p

j=1 xj = 1,x ≥ 0} is the unit simplex;
I f is convex Lf -Lipschitz continuous with respect to some norm ‖ · ‖. (not necessarily L-Lipschitz gradient)

Entropy function
I Define the entropy function

ψe(x) =
p∑
j=1

xj lnxj if x ∈ ∆, +∞ otherwise.

I ψe is 1-strongly convex over int∆ with respect to ‖ · ‖1.
I ψ?e (z) = ln

∑p

j=1 e
zj and ‖∇ψe(x)‖ → ∞ as x→ x̃ ∈ ∆.

I Let x0 = p−11, then dψ(x,x0) ≤ lnp for all x ∈ ∆.
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?Entropic descent algorithm [2]

Entropic descent algorithm (EDA)
Let x0 = p−11 and generate the following sequence

xk+1
j =

xkj e
−tkf ′j(xk)∑p

j=1 x
k
j e
−tkf ′j(xk)

, tk =
√

2lnp
Lf

1
√
k
,

where f ′(x) = (f1(x)′, . . . , fp(x)′)T ∈ ∂f(x), which is the subdifferential of f at x.
I This is an example of non-smooth and constrained optimization;
I The updates are multiplicative.
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?Convergence of mirror descent

Problem

min
x∈X

f(x) (6)

where
I X is a closed convex subset of Rp;
I f is convex Lf -Lipschitz continuous with respect to some norm ‖ · ‖.

Theorem ([2])
Let {xk} be the sequence generated by mirror descent with x0 ∈ intX .
If the step-sizes are chosen as

αk =

√
2µdψ(x?,x0)

Lf

1
√
k

the following convergence rate holds

min
0≤s≤k

f(xs)− f? ≤ Lf

√
2dψ(x?,x0)

µ

1
√
k

I This convergence rate is optimal for solving (6) with a first-order method.
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