Reinforcement Learning
with Neural Networks

Companion slides for the book Bio-Inspired Attificial Intelligence: Theories, Methods, and Technologies by
Dario Floreano and Claudio Mattiussi, MIT Press



What you will learn in this class

The Reinforcement Learning Framework

Reward and Total Return

The state-action value function (Q function)

Value Learning

« Deep Q Learning

Policy Learning

« Policy Gradient Learning



Reinforcement learning

Input: state (sensory information, position, energy, e.g.), action (forward, rotate, turn, e.g.)
Reward: r (collected dirt, e.g.)

Goal: learn behavior (policy) that maximizes the total future rewards
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Reinforcement learning framework

State si41

Reward r;
can be positive,
negative ,or
absent

AGENT

I Action a; 1

The agent wants to choose actions (the policy) that maximize the
total future reward (the Total Return)
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Reward discount and rollouts

Should all rewards, present and future, have the same weight?
The discount factor y is used to give more importance to present rewards than

to remote future rewards

(0.0]

Rt=2yiri 0<y<l1
i=t

Rollout: the finite number of steps n during which the agent interacts with
the environment
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The Q Function

Re=vre + vy + v rep -+ v My
The total return R; is the discounted sum of all future rewards

Q(st, ar) = E[Re]s/, a/]

The Q function describes the expected total return that an agent in can receive
by performing a certain It can also be seen as a look-up table that the agent
gradually builds through several rollouts, for example (fictitious numbers!)

State A State A
State B 1 0 State B -2 4
State C 2 0 State C -6 0
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Finding the optimal policy

A policy m(+) is a strategy to select an action = for a state

NN D) Y

The optimal policy ©*(s) is a policy that maximizes the expected
» £ total return, which is captured by the Q function

If the agent knows the Q function, the optimal policy consists in finding for each
the best over all possible actions that maximize the Q function

m*(s) = argmaxQ(s,a)
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Reinforcement Learning Methods

VALUE LEARNING POLICY LEARNING
Find Directly find
Q(s,a) (s)
and pick best action and sample action
a = argmaxQ(s, a) a~m(s)
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Deep Q Networks

Q(s,a1)

S Q(s, az)
State s Qs,a) W Q(s,az)
- State s (s, an)
Action a
Input Agent Output Input Agent Output

Problem: Q value must be recomputed Solution: ask network to compute Q values
for all possible actions at input state s for all possible actions of input state s
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DQN learning

/

Q(s,aq) 30 —
neural (s, az) 2
| network Q(s,a3) .. 4
State s

Q(s,ay) _— 0

\

target prediction
A S

Q-loss = E [H(r + yn}ﬁle(g', a’) ) —Q(s, a)H 2]

Use back-propagation of error to adapt network weights

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini



DQN learning to play
Atari Breakout game

= screen image

= |left, stay, right

L

https://www.youtube.com/watch?v=V1eYniJORnk
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DQN playing Atari games
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Q learning: strengths and limitations

It guarantees the possibility of identifying the optimal policy is the Q function is learned

BUT

It requires a discrete action space (turn left, go forward, stay, etc.)

It only works for deterministic situations (it cannot learn stochastic policies)

e Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini
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Policy learning

Directly learn the policy m(s): discrete action space

probabilities Probability Distribution
\ — Function must sum to 1
— P(a,

s) 04 \ l
—> P(a,|s) 0.3
neural (a215) T n(s) ~ P(als)
network —> P(asz|s) 0.3 ——

Sample the probability

—> P(a.|s) 0.0

/ (a4ls) distribution to select action:
for example, a;

Input Agent Output
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Policy learning

Directly learn the policy m(s): continuous action space

P(als) = NV (u,0?)
U

0
steering angle

Input Agent Output
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Training on policy gradient

RN =

Initialize weights of the agent

Run the agent (policy) until termination (rollout)

At each time step of the rollout, record the triplet (s;, a;, 1)
Increase probability of actions that led to high reward
Decrease probability of actions that led to low reward

loss = —log P(a;|s;) R;

Aw = —Vloss
Aw = V log P(a|s;) R;

(83; a3; r3)

The loss function increases the probabilities of
actions with higher total return and decreases
probabilities of actions with lower total return

(54; a4;7”4)

The weight change is the gradient ascent of the
loss function with respect to the agent’s weights

An alternative method that does not use gradient ascent is evolutionary computation

B
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Autonomous driving by Policy Gradient Learning

q A Reinforcement learning with data-driven simulation )
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A. Amini et al., Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven
Simulation, (2020) /IEEE Robotics and Automation Letters, 5(2), 1143-1150



Contributions

Our paper makes the following contributions




