
Reinforcement Learning
with Neural Networks

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by
Dario Floreano and Claudio Mattiussi, MIT Press 1

What you will learn in this class

• The Reinforcement Learning Framework

• Reward and Total Return

• The state-action value function (Q function)

• Value Learning

• Deep Q Learning

• Policy Learning

• Policy Gradient Learning

Reinforcement learning

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by
Dario Floreano and Claudio Mattiussi, MIT Press 3

Goal: learn behavior (policy) that maximizes the total future rewards

Input: state (sensory information, position, energy, e.g.), action (forward, rotate, turn, e.g.)

Reward: r (collected dirt, e.g.)

Reinforcement learning framework

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini 4

AGENT ENVIRONMENT

Action at

State st+1

!" =$
%&"

'
(%The agent wants to choose actions (the policy) that maximize the

total future reward (the Total Return)

Reward rt
can be positive,
negative ,or
absent

Reward discount and rollouts

5

!" = $
%&"

'
(%)%

Should all rewards, present and future, have the same weight?
The discount factor g is used to give more importance to present rewards than
to remote future rewards

!" = (")" + ("+,)"+, + ("+-)"+- ⋯+ ("+/)"+/

0 < (< 1

Rollout: the finite number of steps n during which the agent interacts with
the environment

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

6

The Q Function
!" = $"%" + $"'(%"'(+ $"')%"')⋯+ $"'+%"'+

The total return Rt is the discounted sum of all future rewards

, -", /" = 0 !"|-", /"
The Q function describes the expected total return that an agent in state s can receive
by performing a certain action a. It can also be seen as a look-up table that the agent
gradually builds through several rollouts, for example (fictitious numbers!)

Q values Action A Action B
State A 0 0
State B -2 4
State C -6 0

Rewards Action A Action B
State A 3 -3
State B 1 0
State C 2 0

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

7

Finding the optimal policy

If the agent knows the Q function, the optimal policy consists in finding for each state s
the best action a over all possible actions that maximize the Q function

sa, a?
sb, a?
sc, a?
sd, a?
…

A policy ! " is a strategy to select an action a for a state s

The optimal policy !∗(") is a policy that maximizes the expected
total return, which is captured by the Q function

!∗(") = argmax
,

)-(", /

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

Reinforcement Learning Methods

8

VALUE LEARNING POLICY LEARNING

! ", $

$ = argmax
+

)!(", $

Find

and pick best action

. "
Directly find

and sample action
$ ~ . "

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

9

Deep Q Networks

Turn left

State s

Action a

! ", $

Input OutputAgent

State s

!(", $&)

Input OutputAgent

!(", $()
!(", $))
!(", $*)

Problem: Q value must be recomputed
for all possible actions at input state s

Solution: ask network to compute Q values
for all possible actions of input state s

neural
network

neural
network

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

10

DQN learning

State s

!(#, %&)
!(#, %()
!(#, %))
!(#, %*)

neural
network

Q-loss = + , + .max
23

)!(#′, %′ − !(#, %) (

target prediction

30

2

4

0

Use back-propagation of error to adapt network weights

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

11

https://www.youtube.com/watch?v=V1eYniJ0Rnk

DQN learning to play
Atari Breakout game

State = screen image

Paddle actions = left, stay, right

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

12

DQN playing Atari games

V Mnih et al. Nature 518, 529-533 (2015) doi:10.1038/nature14236

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by
Dario Floreano and Claudio Mattiussi, MIT Press 13V Mnih et al. Nature 518, 529-533 (2015) doi:10.1038/nature14236

14

Q learning: strengths and limitations

It guarantees the possibility of identifying the optimal policy is the Q function is learned

BUT

It requires a discrete action space (turn left, go forward, stay, etc.)

It only works for deterministic situations (it cannot learn stochastic policies)

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

15

State s

!(#$|&)

Input OutputAgent

neural
network

!(#(|&)
!(#)|&)
!(#*|&)

Policy learning
Directly learn the policy + & : discrete action space

probabilities

0.4

0.3

0.3

0.0

+ & ~ !(#|&)
Sample the probability

distribution to select action:
for example, a1

Probability Distribution
Function must sum to 1

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

16

State s

Input OutputAgent

neural
network

Policy learning
Directly learn the policy ! " : continuous action space

= −0.8

)* = 0.5 steering angle
0

#
, - " = . #,)*

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

17

Training on policy gradient

1. Initialize weights of the agent
2. Run the agent (policy) until termination (rollout)
3. At each time step of the rollout, record the triplet !", $", %"
4. Increase probability of actions that led to high reward
5. Decrease probability of actions that led to low reward

&'!! = − log - $"|!" /"

∆1 = −∇&'!!
∆1 = ∇ log - $"|!" /"

The loss function increases the probabilities of
actions with higher total return and decreases
probabilities of actions with lower total return

The weight change is the gradient ascent of the
loss function with respect to the agent’s weights

x

!3, $3, %3
!4, $4, %4

!5, $5, %5

!6, $6, %6

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

An alternative method that does not use gradient ascent is evolutionary computation

A. Amini et al., Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven
Simulation, (2020) IEEE Robotics and Automation Letters, 5(2), 1143-1150

Autonomous driving by Policy Gradient Learning

