Reinforcement Learning
with Neural Networks

Companion slides for the book Bio-Inspired Attificial Intelligence: Theories, Methods, and Technologies by
Dario Floreano and Claudio Mattiussi, MIT Press

What you will learn in this class

The Reinforcement Learning Framework

Reward and Total Return

The state-action value function (Q function)

Value Learning

« Deep Q Learning

Policy Learning

« Policy Gradient Learning

Reinforcement learning

Input: state (sensory information, position, energy, e.g.), action (forward, rotate, turn, e.g.)
Reward: r (collected dirt, e.g.)

Goal: learn behavior (policy) that maximizes the total future rewards

\ =
¢ Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 3
%\ Dario Floreano and Claudio Mattiussi, MIT Press

Reinforcement learning framework

State si41

Reward r;
can be positive,
negative ,or
absent

AGENT

I Action a; 1

The agent wants to choose actions (the policy) that maximize the
total future reward (the Total Return)

ENVIRONMENT

Rt — Z’r‘l
—t

l

N
\\ Adapted from MIT 6.5191: Reinforcement Learning, by Alexander Amini

4

Reward discount and rollouts

Should all rewards, present and future, have the same weight?
The discount factor y is used to give more importance to present rewards than

to remote future rewards

(0.0]

Rt=2yiri 0<y<l1
i=t

Rollout: the finite number of steps n during which the agent interacts with
the environment

_ ot t+1 t+2 t+n
Re=yri+y " rgp1 + Y T+ VT T Tegn

U‘ Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

The Q Function

Re=vre + vy + v rep -+ v My
The total return R; is the discounted sum of all future rewards

Q(st, ar) = E[Re]s/, a/]

The Q function describes the expected total return that an agent in can receive
by performing a certain It can also be seen as a look-up table that the agent
gradually builds through several rollouts, for example (fictitious numbers!)

State A State A
State B 1 0 State B -2 4
State C 2 0 State C -6 0

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

Finding the optimal policy

A policy m(+) is a strategy to select an action = for a state

NN D) Y

The optimal policy ©*(s) is a policy that maximizes the expected
» £ total return, which is captured by the Q function

If the agent knows the Q function, the optimal policy consists in finding for each
the best over all possible actions that maximize the Q function

m*(s) = argmaxQ(s,a)

P g Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

Reinforcement Learning Methods

VALUE LEARNING POLICY LEARNING
Find Directly find
Q(s,a) (s)
and pick best action and sample action
a = argmaxQ(s, a) a~m(s)

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

Deep Q Networks

Q(s,a1)

S Q(s, az)
State s Qs,a) W Q(s,az)
- State s (s, an)
Action a
Input Agent Output Input Agent Output

Problem: Q value must be recomputed Solution: ask network to compute Q values
for all possible actions at input state s for all possible actions of input state s

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini 9

DQN learning

/

Q(s,aq) 30 —
neural (s, az) 2
| network Q(s,a3) .. 4
State s

Q(s,ay) _— 0

\

target prediction
A S

Q-loss = E [H(r + yn}ﬁle(g', a’)) —Q(s, a)H 2]

Use back-propagation of error to adapt network weights

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

DQN learning to play
Atari Breakout game

= screen image

= |left, stay, right

L

https://www.youtube.com/watch?v=V1eYniJORnk

ima.. — © ES
| ooOo= 1 1 |

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

DQN playing Atari games

Convolution Convolution Fully connected Fully connected
v v v v

J7TIN
dobbh nmdénum

N\
N\ ;Tj:;\\:fi;:;\ “
e oo o o o e o o

2!

RN 7]
deboobh déDéDDD
[B J ® O o

<N K LY K U4 R BN 4 &
td Ed Ed B3 B2 B2 EX E: N & ¥ 2> 15
!!\!!\I!II!II!II!I'!!‘!! |=||I||HI|I||=I|II|=||II‘!!

V Mnih et al. Nature 518, 529-533 (2015) doi:10.1038/nature14236

12

%00S'? 000°t 009 00S 00k 00€ 002

|

o
— O
~—
— O

| | | | | |

))
((

z

laures| Jeaul| 1seg

%Z']
NOd

[eAs|-uBWINY Mmojeg

9AOQE 10 [9AB]-UBWINY JY

||'Ii'|i"i'Ili"Ililliiiliiiii"-iii;Iiiiii

|

93 eyenld
" Jeynen
| onqisoiy
| spiosesy
" uey-oed "SI\
" Bumog
| sunq eignog
" 1senbeag
" aimuep
[uely
[Jepiwy
[uoxxez
| prey Jony
| 1s10H sueg
| epadnue)

I0M JO PIEZIM

[auoz aneg

| xueisy

| 'O"3IH

[1eq,D
£o)00H 29)

" umog pue dn

| Aqueq Buiysiy

" oinpu3

[10114 Bui)

[femoalq

weyyuein,
" Jeply weeg
|~ siepeau| eoedg
" Buog
[siuus)
[puog sawep
" ooseBuey
[Jouuny peoy
| jnessy
iy
30BNy UoWa(
[Jeydon
" Jequuiin) Azein
| shuepy
[sjuejoqoy
[Jauung Jeyg
" 1noyeaig
| Buixog
I[equIg 08PIA

a

| puewwo) Jeddoyd

[Jeisely ng-Bunyy

| swep siy| sweN

™
—

[~ aBusnay s ewnzajuopy

10.1038/nature 14236

V Mnih et al. Nature 518, 529-533 (2015) doi:

Q learning: strengths and limitations

It guarantees the possibility of identifying the optimal policy is the Q function is learned

BUT

It requires a discrete action space (turn left, go forward, stay, etc.)

It only works for deterministic situations (it cannot learn stochastic policies)

e Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

’?3@% a 14

Policy learning

Directly learn the policy m(s): discrete action space

probabilities Probability Distribution
\ — Function must sum to 1
— P(a,

s) 04 \ l
—> P(a,|s) 0.3
neural (a215) T n(s) ~ P(als)
network —> P(asz|s) 0.3 ——

Sample the probability

—> P(a.|s) 0.0

/ (a4ls) distribution to select action:
for example, a;

Input Agent Output

- U‘ Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

Policy learning

Directly learn the policy m(s): continuous action space

P(als) = NV (u,0?)
U

0
steering angle

Input Agent Output

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini 16

Training on policy gradient

RN =

Initialize weights of the agent

Run the agent (policy) until termination (rollout)

At each time step of the rollout, record the triplet (s;, a;, 1)
Increase probability of actions that led to high reward
Decrease probability of actions that led to low reward

loss = —log P(a;|s;) R;

Aw = —Vloss
Aw = V log P(a|s;) R;

(83; a3; r3)

The loss function increases the probabilities of
actions with higher total return and decreases
probabilities of actions with lower total return

(54; a4;7”4)

The weight change is the gradient ascent of the
loss function with respect to the agent’s weights

An alternative method that does not use gradient ascent is evolutionary computation

B

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini 17

Autonomous driving by Policy Gradient Learning

q A Reinforcement learning with data-driven simulation)

Original Image

Actions

Virtual
Agent

Human trajectories

<

0=-15° 6=-5°
Data Driven
Slmulatlon i
a @ e“:) Sparse rewards &T : I
= synthesized views : -
Perception & Odometry Sample trajectories : I
_ within simulation space L) Depth Map !
, ' T,=-1.5m T,=-0.5m
/B Real world deployment of learned policies :
Control TR IORR ; : :
commands i} | Physical |Policy learned ! !
oy £ o ysica I
= «—| . . 1
Real world s ¥ testbed | insimulation 1w
—> ,."‘ £ . *
_ observations " / T.,=-1.5m T,=-0.5m

A. Amini et al., Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven
Simulation, (2020) /IEEE Robotics and Automation Letters, 5(2), 1143-1150

Contributions

Our paper makes the following contributions

