
1

Evolutionary robotics
Prof. Dario Floreano

Evolutionary Robotics Laboratory

Exercise Sheet 1: Evolving a controller in RoboGen

Euan Judd (euan.judd@epfl.ch)
Krishna Manaswi Digumarti (krishna.digumarti@epfl.ch)

Goal. The goal of this laboratory is for you to become familiar with the RoboGen
Evolutionary Robotics platform. This exercise sheet will focus on the evolution of the brain
(controller) only while all future exercise sheets will include co-adaptation of the body and
the brain. The evolved controller will drive a simple differential wheel drive cart robot
(similar to an e-puck) that has to navigate in an environment as fast as possible while
avoiding obstacles.

Learning objectives for this laboratory.

• Learn how to perform a brain only evolution in RoboGen.

• Basic fitness function design and implementation.

• How to test the generalisability of the evolved solutions. 

• How to transfer the evolved brain into a real robot.

Assignments.

• Complete the instructions in this PDF during the laboratory.

• Every student will submit the best controller found by their evolution on Moodle

(24 March 2022: “Exercise Sheet 1 controller submission Assignment”). Multiple

submissions are possible. The three best robot controllers will be tested at the

beginning of the next class in a 3D printed version of the robot that we have

prepared for you.

Register your team

• You should make a team of 4 people. Register on this google spreadsheet:
bit.ly/35UNwWC

Theory

Neural Controller. The robot is controlled by a neural network which transforms the
inputs from multiple infrared (IR) sensors into motor commands for the left and right
wheels of the robot. The neural network has 4 input neurons and 2 output neurons for the
4 IR sensors and 2 wheels, respectively. Inputs are scaled to fit the range [0,1] to improve
the speed and stability of the learning process. The nonlinear activation function is the

mailto:euan.judd@epfl.ch
mailto:krishna.digumarti@epfl.ch

2

sigmoid function so the output will always be between 0 and 1.

Genetic Algorithm.
A genetic algorithm is used to evolve the synaptic weights of the described neural
controller. The set of synaptic weights, each coded using floating point values, are
therefore the genome of each individual in the population.

After randomly initialising a population of genomes, the population is evolved using
tournament selection, one-point crossover, mutation and either “mu+lambda” (“plus”)
or “mu,lambda” (“comma”) replacement. The genomes of the first generation are
initialized randomly with each weight in the range [−3,3]. Every individual is evaluated in
each generation using the fitness function that you will design in obstacleAvoidance.js
(more on this below).

Tournament selection is used after the entire generation is evaluated. In each
tournament, a set of individuals is randomly selected from the population. The best
individual from this set is then selected as a parent. The child from this parent can then
either come from this parent alone or a pair of parents. If the latter option is selected
(where each of the two options is chosen with a certain probability) then another
tournament is used to select the second parent as well. The new child is a clone of the
parent in the former while the child is a combination of the two parents in the latter using
one-point crossover. The child is then mutated by adding a number, drawn from a
Gaussian distribution with a mean of zero, to each of the genes (weights) with a certain
probability.

Replacement is then used to form the next generation. In “plus” replacement, the next
generation includes both the mu parents and lambda children. Elitism is also used when
creating a new generation, this is where the top-ranking mu individuals from the previous
generation are also copied to the new population without modification. This ensures that
the best solutions from each generation are not lost due to mutation or crossover. On the
other hand, the mu parents are discarded in “comma” replacement and only mu of the
lambda children are copied to the new population (lambda>=mu). This replacement
strategy favours exploration as the best individuals from the previous generation can be
lost.

The parameters that you need to configure:

• choose “plus” or “comma” replacement,

• the values for mu and lambda,

• the tournament size,

• the crossover and mutation probabilities, and

• the mutation standard deviation.
The degree to which each of these influences your evolutionary process will vary
depending on the problem.

Getting Started. We will use the RoboGen software that will run directly in your web
browser (http://robogen.org/app/). This offers the benefit of being available to use on any

http://robogen.org/app/

3

computer without having to go through an installation procedure. Additionally, it supports
distributed computing so that the computational cost of your evolutionary process can be
shared with your teammates. (Note: You can install a desktop version of RoboGen as
well. The user interface version (https://robogen.org/docs/robogen-user-interface/) was
recently tested on Ubuntu 18.04 and works well but the other options
(https://robogen.org/docs/get-started/) may not. However, you should use the web app
for this laboratory.

To get started with the online version, visit http://robogen.org/app

Click on one of the robots on the Home tab of the web app (pictured above). This will run
a demo simulation of the robot. Try these out first to familiarize yourself with the visualizer.
Test the cart robot (centre in the picture above) as this is the robot that we are going to
evolve a controller for today.

Note: Make sure that you close the visualization tab when you are done to free up
resources.

Simulations, evolutions and exercise files

Simulations and evolutions can be performed under the Advanced tab of the web app.
Click on Advanced and then on RoboGen 2022 to see a list of all exercises for this
academic year. These folders currently contain an empty “robot.txt” file but should be
populated by you at the beginning of every laboratory using the zipped folder that we will
put on Moodle each week.

If you haven’t already, download the “Exercise1.zip” folder from Moodle, unzip it and
upload the contents to the “es1” folder on the RoboGen app. This is done by first clicking
on “es1” and then the “Upload” button at the top of the screen. You do not need to
reuploaded these files each time you open the webapp.

The folder contains the following files:

• evolConf.txt

• obstacleAvoidance.js

• robot.txt

• simConf.txt

• startPos.txt

• arena1.txt

• arena2.txt

https://robogen.org/docs/robogen-user-interface/
https://robogen.org/docs/get-started/
http://robogen.org/app

4

How to run a simulation in RoboGen?

You need two files to run a simulation in RoboGen:

1. a robot description file (e.g. robot.txt in the exercise 1 folder) and
2. a configuration file (e.g. simConf.txt in the exercise 1 folder).

The robot description file describes the physical geometry of the robot. The configuration
file describes the physical parameters of the environment. The configuration file inherits
two other files and assigns them to two parameters called obstaclesConfigFile and
scenario. As the name suggests, the contents of the file assigned to obstaclesConfigFile
defines the obstacles in the arena (e.g. obstaclesConfigFile = arena1.txt). The file
assigned to scenario is the JavaScript file where you should implement the fitness
function (e.g. scenario = obstacleAvoidance.js).

As we are going to work with the cart robot today, let’s simulate the cart robot that you
saw in the demo.

Robot description file: For this exercise sheet, you will be using the robot described in
robot.txt file. You will be modifying or even creating the robot description file in later
exercises.

Configuration file: The configuration file for this exercise sheet is simConf.txt. Have a
quick look at this file now along with the files assigned to obstaclesConfigFile and
scenario.

NOTE: All the details about the file, parameter and usage are available in the RoboGen
webpage (e.g. see https://robogen.org/docs/evolution-configuration/#Simulator_settings
for the simConf.txt file parameters).

Once you are ready and all the necessary files required are present in your folder, you
can run a custom simulation. To start your simulation, click on the “Star a simulation”

button.

https://robogen.org/docs/evolution-configuration/#Simulator_settings

5

In the “Start a new simulation” box that appears, type your working directory (e.g. the path
to the exercise 1 folder in the webapp), robot description file and configuration file. You
have to manually type the file
names. The box will turn green if
you type a valid file name and path.

In addition to these two files, the
RoboGen simulator provides a few
other options.

You can select which starting
position to use in startPos.txt if it
contains multiple options (one on
each line) and you have specified
startPositionConfigFile=
startPos.txt in simConf.txt. This is
done by writing the line number of
the start position you want to use
in startPos.txt under “Start
Position”. Currently, there is only
one start position in startPos.txt
which is also the default value if
you had not set
startPositionConfigFile.

“Seed for RNG” is the number that
acts as a seed for generating
random numbers. To randomly
assign a seed you can leave it blank. This seed is useful when you want to regenerate
the exact same simulation that you have generated in the past.

Output directory for logs is the folder where the NeuralNetwork.h file of the simulation will
be generated. This file can be used to program the microcontroller of the real robots.
Hence leave it blank until you have a best controller that can navigate fast and avoid all
obstacles.

After typing these file names, you can click OK to visualize your robot. You should see
that the robot does not move. This is because the robot doesn’t have brain yet!

How to speed up the evaluation of each population in RoboGen
There are two ways to do this. The first is to use parallel processing and the second is to
use distributed computing.

By using parallel processing, you can speed up the computation by taking the advantage
of your multi-core processor. To use it, navigate to the “Computation Tasks” and increase
the “Maximum number of parallel fitness evaluations threads” by moving the slider. Note:
this number you select should be less than the number of cores you have available.

In addition to this, you can distribute your computation across various physical devices.

6

To distribute your computing navigate to the “Computation Tasks”. Type the name for
your computation group and press join. After this, press the radio button next to your
group name. You could ask all your peers to join this group to share your computation.

 Warning When running the public group, the threads should be set to zero.
Otherwise part of the computation could happen anyway locally slowing down
the entire public users group.

How to run an evolution?
Like the simulation, evolution needs a
configuration file with additional parameters
for evolution. The evolution configuration file
contains the evolution parameters (e.g
evolConf.txt). This file also contains the
links to the simulatorConfigFile
(simConf.txt) and referenceRobotFile
(robot.txt). For this TP, use evolConf.txt as
the configuration file.

Click OK to start an evolution.

Tip if the software is having some problem,
try refreshing the page.

Warning all data is being saved to a
virtual file system within your web
browser. If you want to save anything

for later, download it to your home directory!

Fitness Function (aka Scenario Definition)

Scenarios in RoboGen can be defined by short pieces of ECMAScript/JavaScript. Please

read through the accompanying document “Writing_a_RoboGen_Scenario.pdf” for

complete details. As mentioned previously, the objective of this TP is to evolve a neural

controller for a simple differential wheel drive cart robot (similar to the e-puck) that has to

navigate in an environment as fast as possible while avoiding obstacles.

Exercise 1 – Fitness functions

Design and implement a fitness function that would allow the robot to navigate in the

arena as fast as possible and without touching any walls. To do this, modify the code in

7

es1/obstacleAvoidance.js. Note: you can do this on the RoboGen app by clicking on

obstacleAvoidance.js and then clicking on the “edit file” pen symbol.

Read obstacleAvoidance.js carefully. You should see that information about the robot's

behaviour is collected after each simulation step in afterSimulationStep and that, at the

end of the simulation, the fitness is computed in endSimulation.

In obstacleAvoidance.js, the fitness function is highest when the robot moves as fast as

possible:

setupSimulation: function() {
Sets the starting position;

},
afterSimulationStep: function() {

Calculate mean velocity;
Calculate delta velocity;
Calculate maximum IR reading at this time step;

},
endSimulation: function() {

return mean velocity during simulation;
// Your fitness function goes here.

}

Try the first evolution without modifying anything and then try to implement your own

fitness function. To get you started, we have provided vectors of Velocity, deltaVelocity,

maxIrVals, and minDistance that contains corresponding values at each simulation step of

the simulation.

Finally, getFitness will return the min fitness across all simulations. This happens if we

have more than one simulation per individual per generation (e.g. if we have multiple

starting positions). So, if we evaluate a robot in multiple simulations, it is only as good as

its worst case (e.g. the worst performing starting position).

Before trying to evolve with a given fitness function, make sure it works by

just running the simulator.

After the evolution is finished, you can download the BestAvgStd.txt file from the results

8

directory and run the provided plot_results.py file in python folder to create a fitness graph.

Questions:

• Did you get the desired behaviour with your fitness function?

• What strategies did you observe during the evolution and why were they good/bad

in terms of fitness?

• What is the most implicit fitness function you can find?

Exercise 2 – Genetic Algorithm parameters

Re-run the experiment, each time changing one of these parameters in es1/evolConf.txt

• mu, lambda, replacement, tournamentSize, pBrainMutate, brainSigma,

pBrainCrossover

Question:

For each evolution, download and have a look at the fitness graph. Do you see a
difference with respect to your initial evolution?

Exercise 3 – Generalization

We will now test the best individual obtained through evolution. To do so, go to the
Advanced tab and modify es1/simConf.txt

You can increase the time your robot is being tested by changing the nTimeSteps
parameter. Do not change the other parameters (especially timeStep). Save this file and
then choose “Start a Simulation”. Change the robot description file to your best individual,
i.e. my-experiment-path/GenerationBest-N.json, where N is the final generation, and run.

You can also change the starting position of the robot by modifying es1/startPos.txt and
add obstacles by modifying es1/arena1.txt. Additionally, you could also try the simulation
with different arenas by changing the arena used in simConf.txt to arena2.txt.

For details on the contents of these files, see http://robogen.org/docs/evolution-
configuration/#Simulator_settings

Questions:

1. If you increase the simulation time, does the robot continue to perform well?
2. When you move your robot to a different start position, does it still work?
3. When you add obstacles in the environment, does your controller still work?

• If your controller didn’t generalize to these three tests, what could you do to fix
the problem?

http://robogen.org/docs/evolution-configuration/#Simulator_settings
http://robogen.org/docs/evolution-configuration/#Simulator_settings

9

Try to evolve a robot able to perform well in all previous conditions
(increased simulation time, different starting positions and different
obstacles positions). When you are satisfied with the results, submit your
final robot using the following instructions.

Exercise 4 (only best robots) – Transfer to the real robot

See if your robot can solve the maze in arena2.txt using different starting positions. If not,
try to do more evolutions (by changing parameters) to solve the maze problem.

We will show you how well some of your best solutions perform on a real robot next
week. We will therefore need the NeuralNetwork.h file of your robot. To generate this
file:

1. Click “Start a simulation”.
2. In the popup window, select “Generate log files” and provide a directory in

“Output directory for logs”.
3. Navigate to your chosen directory (you might need to reload the RoboGen app

for it to be visible) and download the NeuralNetwork.h file.
4. Upload it to Moodle “Exercise Sheet 1 controller submission”
5. If you have been selected, we will show your neural network on the real robot

next week.

