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Exercice 1. (a) In both cases we have that {0} and the whole ring are ideals. Therefore we will

only search for non-trivial ideals.

We consider the quotient homomorphism
¢€:Fslt] — Fa[ﬂ/(ﬁ)

and we let f = £(f), where f € F3[t]. Let I be a non-trivial ideal in F3 [t]/(tQ). Then, by

Proposition 2.4.38, there exists an ideal J C F3[t] such that (¢2) € J € Fs[t], as I is non-
trivial, and £(J) = I. As F3 is a field, we know that Fs[t] is principal and thus there exists
f(t) € F3[t] such that J = (f). As t2 € (f), it follows that there exists g(¢) € F3[t] such that
t2 = f(t)g(t). Then we have that deg(f) < 2. If deg(f) = 2, respectively deg(f) = 0, then
(f) = (t?), respectively (f) = F3[t], a contradiction. We deduce that deg(f) = 1 and a quick

calculation shows that (f) = (). We conclude that if I is a non-trivial ideal of F3[t] / (t2);
then I = (¢). Furthermore, as

(Fs[t]/(tz))/(g) = F3[t]/(t) >~ Fs,

it follows that I is a maximal ideal in F3[t] / (t2)-

Similarly, we consider the quotient homomorphism
£ :TFolt] — FQ[t]/(t?’)

and we let f = £(f), where f € Fo[t]. Let I be a non-trivial ideal in F2 [ﬂ/(td) Then there

exists an ideal J C Fy[t] with the property that (t3) € J C Fa[t] and £(J) = I. As Ft] is
principal, there exists f € Fa[t] such that J = (f). Now as t3 € (f) it follows that deg(f) < 3.
As T is non-trivial, we deduce that deg(f) = 1 or 2. If deg(f) = 1, then (f) = (¢), while if

deg(f) = 2, then (f) = (t?). We conclude that if I is a non-trivial ideal of F2 [t]/(t3) then
I € {(),(t?)}. Lastly, as

(F2[t]/(t3))/(t) = Fz[t]/(t) = Fo,

it follows that (%) is a maximal ideal in F2[t] / (t3). On the other hand (t2) is neither maximal,

as (t2) C (), nor prime as -t = t2 € (t2) but t ¢ (£2).

Let I € M C A be two ideal in A. By Proposition 1.4.41 we have that:
Al = (A/I)/W(M).

Now M is a maximal ideal in A if and only if 4 / M is a field. Now, by the above, 4 / M is
a field if and only if (A/I)/W(M) is a field, hence if and only if 7(M) is a maximal ideal in
A/I-




Exercice 2. (a) Let f(t),g(t) € At]. We have that

ev(f +9)(a) = (f +9)(a) = f(a) + g(a) = ev(f)(a) + ev(g)(a) = (ev(f) + ev(g))(a)

for all @ € A. Therefore ev(f + g) = ev(f) + ev(g).
Similarly,

ev(fg)(a) = (f9)(a) = f(a)g(a) = ev(f)(a) ev(g)(a) = (ev(f)ev(g))(a)

for all @ € A. Therefore ev(fg) = ev(f)ev(g).

Lastly, we have that ev(1)(a) = 1 for all @ € A and thus ev(l) = 1, where the constant
polynomial function 1 is the unity of F(A).

(b) Let A =7Z/pZ and let f(t) =t? —t € A[t]. Then ev(f)(a) = f(a) =a? —a=0forallaec A
and thus f € ker(ev).

(¢) Let A =R and let f(t) € ker(ev). Then, for all a € R we have that ev(f)(a) = f(a) = 0,
which implies that all elements of R are roots of f. As f can have at most deg(f) real roots,
we conclude that f = 0.

Exercice 3.
Let ¢ : Flx,y] — A be the quotient homomorphism and for f € Flx,y] let f = £(f).

We first note that (zy) C nil(A).

Let (Z) C A. By Exercise 3.1 of Series 4 we have that £71(Z) = (z, 2%¢?) = (), as 2%y3 € (2)
and by Proposition 1.4.41 we deduce that (Z) is a prime ideal of A as:

A7) = F[iv,y]/($) ~ Fly] is an integral domain.

Analogously one shows that (7) C A is a prime ideal.

We now consider the intersection (Z) N (y). Let f € (z) N (¥). Then, in particular, f € (z) and
so f =7 -7, for some g € A. On the other hand, we have that f € (7), hence Z-g € (¥) and,
as () is prime, it follows that g € (7). Therefore f =T-g =T -7-h = 2y - h for some h € A
and we deduce that f € (). As the inclusion (z7) C (Z) N (¥) is immediate, we determine that
(@) N @) = (7).

Finally we have that

nil(d)= (] p<S@nN @ = (=)

Pp—prime

and we conclude that nil(A) = (zy) = (Z) N (Y).

Exercice 4. (a) We first note that Fy[Z/pZ] is an Fp-algebra: F,[Z/pZ] is a commutative ring
and v : F, — Fp[Z/pZ] given by ¢(a) = a - [0], for a € F), is a ring homomorphism with the
property that ¢(F,) C F,[Z/pZ]. In particular, we have that F,[Z/pZ] is an [, vector space
with basis {[0], [g],[29],---,[(p — 1)g]}, where [g] is a fixed generator of Z/pZ.

We now consider the evaluation homomorphism
evig : Fplz] — FplZ/pZ]

ev[g] (.’L‘) =1- [g]

We have that (2P —1) C ker(evyg), as evig(zP —1) = 1-[pg] —1-[0] = 0. On the other hand,
as IF,, is a field, by Corollary 2.2.5, it follows that [F,,[z] is a principal ring and thus there exists



[ € Fy[z] such that ker(ev(,) = (f). Therefore, as 2 —1 € (f), it follows that 27 —1= f.g
for some g € F,[z] and by Lemma 2.1.1 we deduce that deg(f) < p.

p
We write f(x) = Z a;z’, where a; € F,. Then:
i=0

m p—1
evig(f(x)) =Y ai- [ig) = (a0 +ap) - [0] + Y _ a; - [ig] = 0
i=0 i=1

and, as [0], [g], [29], ..., [(p—1)g] are linearly independent, we have ay = —a, and a; = 0 for all
1 <i <p—1. Wededuce that f(z) = a,(zP—1), where a;, € Fp, and thus ker(ev}y)) = (2P —1).

In conclusion, we have shown that Fp[z]/(zP — 1) = F,[Z/pZ)].
(b) Recall that the characteristic is the natural number n such that nZ is the kernel of the
unique ring homomorphism from Z to F,[Z/pZ]. Note the unique ring homomorphism from

Z to F,[Z/pZ] sends x € Z to [z], € F,[Z/pZ]. Its kernel is pZ therefore Fp[Z/pZ] has

characteristic p.

p—1
(c) Let a = Z a; - ([g] = 1)" be an idempotent element of F,|[Z/pZ)]. Then
i=0

p—1
a* =Y aia;-[(i+7)g) =Y ax-[kg] = a
ij k=0

and, as [0],[g],...,[(p — 1)g] are linearly independent, it follows that aj = Z a;a; for all
it+j=Fk

0 <k <p-—1. In particular, we have ag = ag and so ag = 0 or ag = 1. As a1 = apay + aiag

we see that in both cases we obtain a; = 0. Recursively, we deduce that

Af+1 = E a;a; = apag+1 + ( § aiaj) + apag4+1 = apGg+1 + Ax1+100
i+j=k+1 i+j=k+1
1<i,5<k

and therefore a1 = 0. Hence, if ag = 0, it follows that a = 0 - [0], while, if ag = 1, it follows
that @ = 1-[0]. We have shown that the only idempotents of F,[Z/pZ] are 0 - [0] and 1 - [0].
By Proposition 2.4.55 and Remark 2.4.56 we conclude that Fp[Z/pZ] cannot be decomposed
as a product of non-zero rings.

Exercice 5.
We define N : Z[v/2i] = NU{—o0} by N(z ++/2iy) = 2 + 2y>. We will show that (Z[/2i], N) is
an Euclidean domain.

Let 0 # a € Z[v/2i], where a = z + v/2iy. Then N(a) = 2% 4 2y% € N.

Now let a,b € Z[v/2i], where a # 0. We want to show that there exist g, € Z[v/2i] such that

b=gqa+rand N(r) < N(a).

Consider the complex number 2. There exist s,t € R such that g = s+tv/2i. Let z,y € Z be such
that |s — 2| < 1 and |t — y| < 3. Then z + y/2i € Z[V/2i] and

N((s +tV2i) — (x4 yV2i)) < (;)2 - 2(;)2 = %

Let ¢ = 2 + yv/2i and let 7 = b — aq. Thenr=7.a= (Z—q)aand



1 Supplementary exercise

Exercice 6. (a) Let Z ag-g € Z(A) and let h € G. Then 1-h € A is invertible with inverse
geG
(1-h)~1 =1-h~! and we have

(1-h)( Zag g)(1L-h)” Zag hgh™t = Zah,lg/h-glzz%/-g/
geG g€q JeG Jdea

It follows that aj-14, = a4 for all h € G and thus the map g — a4 is constant over equivalence
classes.

Conversely, assume that g — a4 is constant over equivalence classes. Let 1-h € A. Then:

1hZagg1h Zahlghg Zag"gl

geG J eq g eqG
and thus
1hZagg Zagglh) for all h € G.
geG geG
Therefore
(Zah’h)(z%’g) = Zah‘hZag-g: Zah(zagg)h: (Zagg)(Zah'h)
heG geG heG geG heG  geG geG heG

and consequently Z ag-g € Z(A).
geG

(b) Fix A = C[S3]. By (a) we have that e, es,e3 € Z(A). We will now show that they are
idempotents. First,

d= (> m

geSs heSs
[ZngZ (12)+ > g(13) + > g(23) + > g(123) + > g( 132]
gESs gES3 gESs gES3 gESs gESs
= Z g =e€1.
9653

In the above we have used the fact that for all x € S3, the map S3 — S3 sending a — ax is
bijective. Hence Z gxr = Z g for all z € S3. Secondly,

gES3 gES3
e5 = 36 (> sen(g)g)( D sen(h)h)
g€eSs heSs
— 35| sl — X senio)a(12) - Y- senlao(13) - 3 senlao(23)+
gES3 gESs gES3 gES3
+ > sen(g)g(123) + ) sgn(yg (132)]
geSs geS3
= % [ > sgn(g)g— Y sen(g(12))g — Y sgn(g(13))g — Y sgn(g(23))g+
gES3 gESs gESs gESs
+ ) sen(g(132))g+ Y sgn(g(123))g]
gESs gEeS3

fstgn

gESs



In the above we have used the fact that sgn(o7) = sgn(o)sgn(7) for all o, 7 € Ss.
Lastly, we will show that fi and f» are idempotents and that f1fo = fofi = 0. We have that:

fi= % [Id +e(123) + £%(132) + £(123) + €(132) + Id +?(132) + Id +5(123)]
— ;[Id+s(123) +52(132)} = f1.
Analogously one shows that f2 = f,. Keeping in mind that ¢? + & = —1, we have
fifo = é [Id +e(123) + £%(132) + £2(123) + (132) + e Id +£(132) + 2 1d +(123)}
= %(1 +e+¢e?) [Id +(123) + (132)} =0.

Analogously one shows that faf; = 0. Therefore €3 = (f1 + f2)? = ff + fife + fofi + f2 =
fi+fa=es.

We have shown that e, eq,e3 are central idempotents. We will now show that they are
pairwise orthogonal. We have

crea = 55| o= L a12) = X013 - 30023+ X 9128) + 3 a132)] =0,

geG geG geG geG geG geG

Analogously one shows that eze; = 0. We note that eg = %(21d —(123) — (132)). Then

ere3 = [ > 9= g(123) 29(132)] =

geG geG geG
and
1
ere3 = 72 [ Z sgn(g)g — Z sgn(g)g(123) Z sgn(g)g(132) }
geG geG geG
1
:8[ > “sgu(g)g — Y sgn(h(132))h — Y sgn(h(123)) ]
geqG heG heG
=0.

Now e + ey = 1[Id +(123) + (132)] is a central idempotent in A4, as (e1 + €2)? = €f + eqea +
egeq + e% = e1 + e3. Furthermore, one checks that (e; + ez2)es = 0 and e + ez + e = Id.
Thus, by Proposition 1.4.55, we have that A = A(e; + e3) x Aes.

Similarly, e; and e are central orthogonal idempotents in A(e; + e2) and, as e; + ey is the
identity in A(e1+e2), we once more apply Proposition 1.4.55 to obtain A(e;4e2) & Aeq x Aes.
We have shown that:

A= A61 X A€2 X Aeg.

Let x € Aey. Then x = yey, where y = ag Id +a1(12)+a2(13)+a3(23)+a4(123)+a5(132) € A.
We compute

r=aY gt oY g(12)+ar Y g(13) +as 3 9(23) +as 3 0(123) + a5 Y 6(132)

geG geG geG geG geG geG
= (ao+a1+a2—|—a3+a4+a5)Zg
geG

5
= (> _aer

1=0



Therefore if x € Ae; then & = cyeq, for some ¢, € C. Analogously, one shows that if
x € Aeg then x = czeg, for some ¢, € C. (In this case, computations will show that
Ce = Qg — a1 — a2 — a3 + a4 + as.)

For i = 1,2 consider the map ¢ : Ae; — C given by ¢(x) = ¢,. One checks that ¢ is a ring
isomorphism and concludes that Ae; =2 C, for i = 1, 2.

Let z € Aes. Then x = yes, where y = ag Id +a1(12)+a2(13)+a3(23)+a4(123)+a5(132) € A.
We compute

yfi = (a0 + ase + ase”) f1 + (a1 + age + aze®)(12) fy
and

yf2 = (ag + ase + ase”) f2 + (a1 + ase + aze”)(12) f

to determine that

x = (ag + ase + a462)f1 + (a1 + age + a362)(12)f1 + (ap + ase + a5€2)f2 + (a1 + asze + a252)(12)f2
=z1f1 +22(12) f1 + 23(12) fo + 4 fo,

where 1,9, x3,24 € C.

Define the map ¢ : Aes — M>(C) by p(z) = <§1 i?’) Clearly ¢ is a bijective map,
2 T4

oz +y) = ¢(x) + p(y) for all z,y € Aes and p(e3) = Is. What remains to show is that

o(zy) = o(x)p(y) for all z,y € Aes.

We first remark that
(12) 11 = 5[012) + £(28) + 2(13)] = £2(12)

and

f1(12) = 2[(12) + (13) + £%(23)] = (12) fo.

Now, keeping in mind that f2 = fi, f2 = fo, fifs = fofi = 0, (12)fi = f»(12) and
f1(12) = (12) f2, we have

W=

zy = (v1f1 + 22(12) fi + 23(12) f2 + zafo) (1 f1 + y2(12) f1 + y3(12) f2 + ya f2)
= 211 [T + 291 (12) fif1 + 2391 (12) fo fi + zavn fo fr + 21y2.f1(12) fi + 22y2(12) f1(12) f1+
+ 23y2(12) f2(12) f1 + way2f2(12) f1 + 2193 f1(12) f2 + 2y3(12) f1(12) f2 + 23y3(12) f2(12) fo+
+ 2ay3 fo(12) fo + w1yafi fo + 22ya(12) 1 fo + w392 (12) fofo + Tayaf3
= 21y1f1 + 22y1(12) f1 + 23y2 f1 + 24y2(12) f1 + 21y3(12) fo + 2y3 fo + 23y4(12) fo + T4y fo
= (z1y1 + 23y2) f1 + (z2y1 + 24y2) (12) f1 + (21y3 + 23y4) (12) f2 + (22y3 + T4ya) fo.

T1Y1 +T3Y2 T1Ys + T3Y4 r1 T3 Y1 Y3
Thus p(zy) = = . = p(x . We con-
wley) <332y1 + 24Y2 x2Y3 + 964y4> <$2 964) (yz y4> Pl)ely)

clude that ¢ is a ring isomorphism and thus Aes = My(C).



