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Exercice 1. (a) In both cases we have that {0} and the whole ring are ideals. Therefore we will
only search for non-trivial ideals.

We consider the quotient homomorphism

ξ : F3[t]→ F3[t]
/
(t2)

and we let f = ξ(f), where f ∈ F3[t]. Let I be a non-trivial ideal in F3[t]
/
(t2). Then, by

Proposition 2.4.38, there exists an ideal J ⊆ F3[t] such that (t2) ( J ( F3[t], as I is non-
trivial, and ξ(J) = I. As F3 is a field, we know that F3[t] is principal and thus there exists
f(t) ∈ F3[t] such that J = (f). As t2 ∈ (f), it follows that there exists g(t) ∈ F3[t] such that
t2 = f(t)g(t). Then we have that deg(f) ≤ 2. If deg(f) = 2, respectively deg(f) = 0, then
(f) = (t2), respectively (f) = F3[t], a contradiction. We deduce that deg(f) = 1 and a quick
calculation shows that (f) = (t). We conclude that if I is a non-trivial ideal of F3[t]

/
(t2),

then I = (t). Furthermore, as

(F3[t]/(t
2))
/
(t) ∼= F3[t]

/
(t) ∼= F3,

it follows that I is a maximal ideal in F3[t]
/
(t2).

Similarly, we consider the quotient homomorphism

ξ : F2[t]→ F2[t]
/
(t3)

and we let f = ξ(f), where f ∈ F2[t]. Let I be a non-trivial ideal in F2[t]
/
(t3). Then there

exists an ideal J ⊆ F2[t] with the property that (t3) ( J ( F2[t] and ξ(J) = I. As F2[t] is
principal, there exists f ∈ F2[t] such that J = (f). Now as t3 ∈ (f) it follows that deg(f) ≤ 3.
As I is non-trivial, we deduce that deg(f) = 1 or 2. If deg(f) = 1, then (f) = (t), while if
deg(f) = 2, then (f) = (t2). We conclude that if I is a non-trivial ideal of F2[t]

/
(t3) then

I ∈ {(t), (t2)}. Lastly, as

(F2[t]
/
(t3))

/
(t) ∼= F2[t]

/
(t) ∼= F2,

it follows that (t) is a maximal ideal in F2[t]
/
(t3). On the other hand (t2) is neither maximal,

as (t2) ⊆ (t), nor prime as t · t = t2 ∈ (t2) but t /∈ (t2).

(b) Let I ⊆M ⊆ A be two ideal in A. By Proposition 1.4.41 we have that:

A
/
M ∼= (A/I)

/
π(M).

Now M is a maximal ideal in A if and only if A
/
M is a field. Now, by the above, A

/
M is

a field if and only if (A/I)
/
π(M) is a field, hence if and only if π(M) is a maximal ideal in

A
/
I.



Exercice 2. (a) Let f(t), g(t) ∈ A[t]. We have that

ev(f + g)(a) = (f + g)(a) = f(a) + g(a) = ev(f)(a) + ev(g)(a) = (ev(f) + ev(g))(a)

for all a ∈ A. Therefore ev(f + g) = ev(f) + ev(g).

Similarly,

ev(fg)(a) = (fg)(a) = f(a)g(a) = ev(f)(a) ev(g)(a) = (ev(f) ev(g))(a)

for all a ∈ A. Therefore ev(fg) = ev(f) ev(g).

Lastly, we have that ev(1)(a) = 1 for all a ∈ A and thus ev(1) = 1, where the constant
polynomial function 1 is the unity of F(A).

(b) Let A = Z/pZ and let f(t) = tp − t ∈ A[t]. Then ev(f)(a) = f(a) = ap − a = 0 for all a ∈ A
and thus f ∈ ker(ev).

(c) Let A = R and let f(t) ∈ ker(ev). Then, for all a ∈ R we have that ev(f)(a) = f(a) = 0,
which implies that all elements of R are roots of f . As f can have at most deg(f) real roots,
we conclude that f = 0.

Exercice 3.
Let ξ : F [x, y]→ A be the quotient homomorphism and for f ∈ F [x, y] let f = ξ(f).

We first note that (xy) ⊆ nil(A).
Let (x) ⊆ A. By Exercise 3.1 of Series 4 we have that ξ−1(x) = (x, x2y3) = (x), as x2y3 ∈ (x)

and by Proposition 1.4.41 we deduce that (x) is a prime ideal of A as:

A
/
(x) ∼= F [x, y]

/
(x) ∼= F [y] is an integral domain.

Analogously one shows that (y) ⊆ A is a prime ideal.
We now consider the intersection (x) ∩ (y). Let f ∈ (x) ∩ (y). Then, in particular, f ∈ (x) and

so f = x · g, for some g ∈ A. On the other hand, we have that f ∈ (y), hence x · g ∈ (y) and,
as (y) is prime, it follows that g ∈ (y). Therefore f = x · g = x · y · h = xy · h for some h ∈ A
and we deduce that f ∈ (xy). As the inclusion (xy) ⊆ (x) ∩ (y) is immediate, we determine that
(x) ∩ (y) = (xy).

Finally we have that
nil(A) =

⋂
p−prime

p ⊆ (x) ∩ (y) = (xy)

and we conclude that nil(A) = (xy) = (x) ∩ (y).

Exercice 4. (a) We first note that Fp[Z/pZ] is an Fp-algebra: Fp[Z/pZ] is a commutative ring
and ψ : Fp → Fp[Z/pZ] given by ψ(a) = a · [0], for a ∈ Fp, is a ring homomorphism with the
property that ψ(Fp) ⊆ Fp[Z/pZ]. In particular, we have that Fp[Z/pZ] is an Fp vector space
with basis {[0], [g], [2g], . . . , [(p− 1)g]}, where [g] is a fixed generator of Z/pZ.
We now consider the evaluation homomorphism

ev[g] : Fp[x]→ Fp[Z/pZ]

ev[g](x) = 1 · [g].

We have that (xp− 1) ⊆ ker(ev[g]), as ev[g](xp− 1) = 1 · [pg]− 1 · [0] = 0. On the other hand,
as Fp is a field, by Corollary 2.2.5, it follows that Fp[x] is a principal ring and thus there exists



f ∈ Fp[x] such that ker(ev[g]) = (f). Therefore, as xp − 1 ∈ (f), it follows that xp − 1 = f · g
for some g ∈ Fp[x] and by Lemma 2.1.1 we deduce that deg(f) ≤ p.

We write f(x) =
p∑

i=0

aix
i, where ai ∈ Fp. Then:

ev[g](f(x)) =
m∑
i=0

ai · [ig] = (a0 + ap) · [0] +
p−1∑
i=1

ai · [ig] = 0

and, as [0], [g], [2g], . . . , [(p−1)g] are linearly independent, we have a0 = −ap and ai = 0 for all
1 ≤ i ≤ p−1. We deduce that f(x) = ap(x

p−1), where ap ∈ Fp, and thus ker(ev[g]) = (xp−1).
In conclusion, we have shown that Fp[x]/(x

p − 1) ∼= Fp[Z/pZ].

(b) Recall that the characteristic is the natural number n such that nZ is the kernel of the
unique ring homomorphism from Z to Fp[Z/pZ]. Note the unique ring homomorphism from
Z to Fp[Z/pZ] sends x ∈ Z to [x]p ∈ Fp[Z/pZ]. Its kernel is pZ therefore Fp[Z/pZ] has
characteristic p.

(c) Let a =

p−1∑
i=0

a
′
i · ([g]− 1)i be an idempotent element of Fp[Z/pZ]. Then

a2 =
∑
i,j

aiaj · [(i+ j)g] =

p−1∑
k=0

ak · [kg] = a

and, as [0], [g], . . . , [(p − 1)g] are linearly independent, it follows that ak =
∑

i+j=k

aiaj for all

0 ≤ k ≤ p− 1. In particular, we have a0 = a20 and so a0 = 0 or a0 = 1. As a1 = a0a1 + a1a0
we see that in both cases we obtain a1 = 0. Recursively, we deduce that

ak+1 =
∑

i+j=k+1

aiaj = a0ak+1 +
( ∑
i+j=k+1
1≤i,j≤k

aiaj
)
+ a0ak+1 = a0ak+1 + ak+1a0

and therefore ak+1 = 0. Hence, if a0 = 0, it follows that a = 0 · [0], while, if a0 = 1, it follows
that a = 1 · [0]. We have shown that the only idempotents of Fp[Z/pZ] are 0 · [0] and 1 · [0].
By Proposition 2.4.55 and Remark 2.4.56 we conclude that Fp[Z/pZ] cannot be decomposed
as a product of non-zero rings.

Exercice 5.
We define N : Z[

√
2i]→ N ∪ {−∞} by N(x+

√
2iy) = x2 + 2y2. We will show that (Z[

√
2i], N) is

an Euclidean domain.
Let 0 6= a ∈ Z[

√
2i], where a = x+

√
2iy. Then N(a) = x2 + 2y2 ∈ N.

Now let a, b ∈ Z[
√
2i], where a 6= 0. We want to show that there exist q, r ∈ Z[

√
2i] such that

b = qa+ r and N(r) < N(a).

Consider the complex number b
a . There exist s, t ∈ R such that b

a = s+ t
√
2i. Let x, y ∈ Z be such

that |s− x| ≤ 1
2 and |t− y| ≤ 1

2 . Then x+ y
√
2i ∈ Z[

√
2i] and

N((s+ t
√
2i)− (x+ y

√
2i)) ≤

(
1

2

)2

+ 2

(
1

2

)2

=
3

4
.

Let q = x+ y
√
2i and let r = b− aq. Then r = r

a · a =

(
b
a − q

)
a and

N(r) = N

(
b

a
− q
)
N(a) ≤ 3

4
N(a) < N(a).



1 Supplementary exercise

Exercice 6. (a) Let
∑
g∈G

ag · g ∈ Z(A) and let h ∈ G. Then 1 · h ∈ A is invertible with inverse

(1 · h)−1 = 1 · h−1 and we have

(1 · h)(
∑
g∈G

ag · g)(1 · h)−1 =
∑
g∈G

ag · hgh−1 =
∑
g′∈G

ah−1g′h · g
′
=
∑
g′∈G

ag′ · g
′
.

It follows that ah−1gh = ag for all h ∈ G and thus the map g → ag is constant over equivalence
classes.

Conversely, assume that g → ag is constant over equivalence classes. Let 1 · h ∈ A. Then:

(1 · h)(
∑
g∈G

ag · g)(1 · h)−1 =
∑
g′∈G

ah−1g′h · g
′
=
∑
g′∈G

ag′ · g
′

and thus
(1 · h)(

∑
g∈G

ag · g) = (
∑
g∈G

ag · g)(1 · h), for all h ∈ G.

Therefore

(
∑
h∈G

ah · h)(
∑
g∈G

ag · g) =
∑
h∈G

ah · h
∑
g∈G

ag · g =
∑
h∈G

ah(
∑
g∈G

agg)h = (
∑
g∈G

ag · g)(
∑
h∈G

ah · h)

and consequently
∑
g∈G

ag · g ∈ Z(A).

(b) Fix A = C[S3]. By (a) we have that e1, e2, e3 ∈ Z(A). We will now show that they are
idempotents. First,

e21 =
1

36
(
∑
g∈S3

g)(
∑
h∈S3

h)

=
1

36

[ ∑
g∈S3

g +
∑
g∈S3

g(12) +
∑
g∈S3

g(13) +
∑
g∈S3

g(23) +
∑
g∈S3

g(123) +
∑
g∈S3

g(132)

]
=

1

6

∑
g∈S3

g = e1.

In the above we have used the fact that for all x ∈ S3, the map S3 → S3 sending a → ax is
bijective. Hence

∑
g∈S3

gx =
∑
g∈S3

g for all x ∈ S3. Secondly,

e22 =
1

36
(
∑
g∈S3

sgn(g)g)(
∑
h∈S3

sgn(h)h)

=
1

36

[ ∑
g∈S3

sgn(g)g −
∑
g∈S3

sgn(g)g(12)−
∑
g∈S3

sgn(g)g(13)−
∑
g∈S3

sgn(g)g(23)+

+
∑
g∈S3

sgn(g)g(123) +
∑
g∈S3

sgn(g)g(132)

]

=
1

36

[ ∑
g∈S3

sgn(g)g −
∑
g∈S3

sgn(g(12))g −
∑
g∈S3

sgn(g(13))g −
∑
g∈S3

sgn(g(23))g+

+
∑
g∈S3

sgn(g(132))g +
∑
g∈S3

sgn(g(123))g

]
=

1

6

∑
g∈S3

sgn(g)g = e2.



In the above we have used the fact that sgn(στ) = sgn(σ) sgn(τ) for all σ, τ ∈ S3.
Lastly, we will show that f1 and f2 are idempotents and that f1f2 = f2f1 = 0. We have that:

f21 =
1

9

[
Id+ε(123) + ε2(132) + ε(123) + ε2(132) + Id+ε2(132) + Id+ε(123)

]
=

1

3

[
Id+ε(123) + ε2(132)

]
= f1.

Analogously one shows that f22 = f2. Keeping in mind that ε2 + ε = −1, we have

f1f2 =
1

9

[
Id+ε(123) + ε2(132) + ε2(123) + (132) + ε Id+ε(132) + ε2 Id+(123)

]
=

1

9
(1 + ε+ ε2)

[
Id+(123) + (132)

]
= 0.

Analogously one shows that f2f1 = 0. Therefore e23 = (f1 + f2)
2 = f21 + f1f2 + f2f1 + f22 =

f1 + f2 = e3.

We have shown that e1, e2, e3 are central idempotents. We will now show that they are
pairwise orthogonal. We have

e1e2 =
1

36

[∑
g∈G

g −
∑
g∈G

g(12)−
∑
g∈G

g(13)−
∑
g∈G

g(23) +
∑
g∈G

g(123) +
∑
g∈G

g(132)

]
= 0.

Analogously one shows that e2e1 = 0. We note that e3 = 1
3(2 Id−(123)− (132)). Then

e1e3 =
1

18

[
2
∑
g∈G

g −
∑
g∈G

g(123)−
∑
g∈G

g(132)

]
= 0

and

e2e3 =
1

18

[
2
∑
g∈G

sgn(g)g −
∑
g∈G

sgn(g)g(123)−
∑
g∈G

sgn(g)g(132)

]

=
1

18

[
2
∑
g∈G

sgn(g)g −
∑
h∈G

sgn(h(132))h−
∑
h∈G

sgn(h(123))h

]
= 0.

Now e1 + e2 =
1
3 [Id+(123) + (132)] is a central idempotent in A, as (e1 + e2)

2 = e21 + e1e2 +
e2e1 + e22 = e1 + e2. Furthermore, one checks that (e1 + e2)e3 = 0 and e1 + e2 + e3 = Id.
Thus, by Proposition 1.4.55, we have that A ∼= A(e1 + e2)×Ae3.
Similarly, e1 and e2 are central orthogonal idempotents in A(e1 + e2) and, as e1 + e2 is the
identity in A(e1+e2), we once more apply Proposition 1.4.55 to obtain A(e1+e2) ∼= Ae1×Ae2.
We have shown that:

A ∼= Ae1 ×Ae2 ×Ae3.

(c) Let x ∈ Ae1. Then x = ye1, where y = a0 Id+a1(12)+a2(13)+a3(23)+a4(123)+a5(132) ∈ A.
We compute

x = a0
∑
g∈G

g + a1
∑
g∈G

g(12) + a2
∑
g∈G

g(13) + a3
∑
g∈G

g(23) + a4
∑
g∈G

g(123) + a5
∑
g∈G

g(132)

= (a0 + a1 + a2 + a3 + a4 + a5)
∑
g∈G

g

= (

5∑
i=0

ai)e1.



Therefore if x ∈ Ae1 then x = cxe1, for some cx ∈ C. Analogously, one shows that if
x ∈ Ae2 then x = cxe2, for some cx ∈ C. (In this case, computations will show that
cx = a0 − a1 − a2 − a3 + a4 + a5.)

For i = 1, 2 consider the map ϕ : Aei → C given by ϕ(x) = cx. One checks that ϕ is a ring
isomorphism and concludes that Aei ∼= C, for i = 1, 2.

(d) Let x ∈ Ae3. Then x = ye3, where y = a0 Id+a1(12)+a2(13)+a3(23)+a4(123)+a5(132) ∈ A.
We compute

yf1 = (a0 + a5ε+ a4ε
2)f1 + (a1 + a2ε+ a3ε

2)(12)f1

and
yf2 = (a0 + a4ε+ a5ε

2)f2 + (a1 + a3ε+ a2ε
2)(12)f2

to determine that

x = (a0 + a5ε+ a4ε
2)f1 + (a1 + a2ε+ a3ε

2)(12)f1 + (a0 + a4ε+ a5ε
2)f2 + (a1 + a3ε+ a2ε

2)(12)f2

= x1f1 + x2(12)f1 + x3(12)f2 + x4f2,

where x1, x2, x3, x4 ∈ C.

Define the map ϕ : Ae3 → M2(C) by ϕ(x) =

(
x1 x3
x2 x4

)
. Clearly ϕ is a bijective map,

ϕ(x + y) = ϕ(x) + ϕ(y) for all x, y ∈ Ae3 and ϕ(e3) = I2. What remains to show is that
ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ Ae3.
We first remark that

(12)f1 =
1

3
[(12) + ε(23) + ε2(13)] = f2(12)

and
f1(12) =

1

3
[(12) + ε(13) + ε2(23)] = (12)f2.

Now, keeping in mind that f21 = f1, f22 = f2, f1f2 = f2f1 = 0, (12)f1 = f2(12) and
f1(12) = (12)f2, we have

xy = (x1f1 + x2(12)f1 + x3(12)f2 + x4f2)(y1f1 + y2(12)f1 + y3(12)f2 + y4f2)

= x1y1f
2
1 + x2y1(12)f1f1 + x3y1(12)f2f1 + x4y1f2f1 + x1y2f1(12)f1 + x2y2(12)f1(12)f1+

+ x3y2(12)f2(12)f1 + x4y2f2(12)f1 + x1y3f1(12)f2 + x2y3(12)f1(12)f2 + x3y3(12)f2(12)f2+

+ x4y3f2(12)f2 + x1y4f1f2 + x2y4(12)f1f2 + x3y4(12)f2f2 + x4y4f
2
2

= x1y1f1 + x2y1(12)f1 + x3y2f1 + x4y2(12)f1 + x1y3(12)f2 + x2y3f2 + x3y4(12)f2 + x4y4f2

= (x1y1 + x3y2)f1 + (x2y1 + x4y2)(12)f1 + (x1y3 + x3y4)(12)f2 + (x2y3 + x4y4)f2.

Thus ϕ(xy) =

(
x1y1 + x3y2 x1y3 + x3y4
x2y1 + x4y2 x2y3 + x4y4

)
=

(
x1 x3
x2 x4

)
·
(
y1 y3
y2 y4

)
= ϕ(x)ϕ(y). We con-

clude that ϕ is a ring isomorphism and thus Ae3 ∼=M2(C).


