Exercice 1. (a) In both cases we have that $\{0\}$ and the whole ring are ideals. Therefore we will only search for non-trivial ideals.

We consider the quotient homomorphism

$$
\xi:\mathbb{F}_3[t]\to\mathbb{F}_3[t]\Big/(t^2)
$$

and we let $\overline{f} = \xi(f)$, where $f \in \mathbb{F}_3[t]$. Let I be a non-trivial ideal in $\mathbb{F}_3[t]/(t^2)$. Then, by Proposition 2.4.38, there exists an ideal $J \subseteq \mathbb{F}_3[t]$ such that $(t^2) \subsetneq J \subsetneq \mathbb{F}_3[t]$, as I is nontrivial, and $\xi(J) = I$. As \mathbb{F}_3 is a field, we know that $\mathbb{F}_3[t]$ is principal and thus there exists $f(t) \in \mathbb{F}_3[t]$ such that $J = (f)$. As $t^2 \in (f)$, it follows that there exists $g(t) \in \mathbb{F}_3[t]$ such that $t^2 = f(t)g(t)$. Then we have that $\deg(f) \leq 2$. If $\deg(f) = 2$, respectively $\deg(f) = 0$, then $(f) = (t^2)$, respectively $(f) = \mathbb{F}_3[t]$, a contradiction. We deduce that $\deg(f) = 1$ and a quick calculation shows that $(f) = (t)$. We conclude that if I is a non-trivial ideal of $\mathbb{F}_3[t]/(t^2)$, then $I = (\bar{t})$. Furthermore, as

$$
(\mathbb{F}_3[t]/(t^2))\Big/(\overline{t})\cong \mathbb{F}_3[t]\Big/(t)\cong \mathbb{F}_3,
$$

it follows that I is a maximal ideal in $\mathbb{F}_3[t]/(t^2)$. Similarly, we consider the quotient homomorphism

$$
\xi:\mathbb{F}_2[t]\to\mathbb{F}_2[t]\Big/(t^3)
$$

and we let $\overline{f} = \xi(f)$, where $f \in \mathbb{F}_2[t]$. Let I be a non-trivial ideal in $\mathbb{F}_2[t]/(t^3)$. Then there exists an ideal $J \subseteq \mathbb{F}_2[t]$ with the property that $(t^3) \subsetneq J \subsetneq \mathbb{F}_2[t]$ and $\xi(J) = I$. As $\mathbb{F}_2[t]$ is principal, there exists $f \in \mathbb{F}_2[t]$ such that $J = (f)$. Now as $t^3 \in (f)$ it follows that $\deg(f) \leq 3$. As I is non-trivial, we deduce that $\deg(f) = 1$ or 2. If $\deg(f) = 1$, then $(f) = (t)$, while if $\deg(f) = 2$, then $(f) = (t^2)$. We conclude that if I is a non-trivial ideal of $\mathbb{F}_2[t]/(t^3)$ then $I \in \{(\bar{t}), (t^2)\}\.$ Lastly, as

$$
(\mathbb{F}_2[t]/(t^3))\bigg/(\overline{t})\cong \mathbb{F}_2[t]/(t)\cong \mathbb{F}_2,
$$

it follows that (\bar{t}) is a maximal ideal in $\mathbb{F}_2[t]/(t^3)$. On the other hand (\bar{t}^2) is neither maximal,

as $(t^2) \subseteq (\bar{t})$, nor prime as $\bar{t} \cdot \bar{t} = t^2 \in (t^2)$ but $\bar{t} \notin (t^2)$.

(b) Let $I \subseteq M \subseteq A$ be two ideal in A. By Proposition 1.4.41 we have that:

$$
A/M \cong (A/I)\Big/\pi(M)\cdot
$$

Now M is a maximal ideal in A if and only if A/M is a field. Now, by the above, A/M is a field if and only if $(A/I)\big/_{\pi(M)}$ is a field, hence if and only if $\pi(M)$ is a maximal ideal in $A/I.$

Exercice 2. (a) Let $f(t), g(t) \in A[t]$. We have that

$$
ev(f + g)(a) = (f + g)(a) = f(a) + g(a) = ev(f)(a) + ev(g)(a) = (ev(f) + ev(g))(a)
$$

for all $a \in A$. Therefore $ev(f + q) = ev(f) + ev(q)$. Similarly,

$$
ev(fg)(a) = (fg)(a) = f(a)g(a) = ev(f)(a) ev(g)(a) = (ev(f) ev(g))(a)
$$

for all $a \in A$. Therefore $ev(fq) = ev(f) ev(q)$.

Lastly, we have that $ev(1)(a) = 1$ for all $a \in A$ and thus $ev(1) = 1$, where the constant polynomial function 1 is the unity of $\mathcal{F}(A)$.

- (b) Let $A = \mathbb{Z}/p\mathbb{Z}$ and let $f(t) = t^p t \in A[t]$. Then $ev(f)(a) = f(a) = a^p a = 0$ for all $a \in A$ and thus $f \in \text{ker}(ev)$.
- (c) Let $A = \mathbb{R}$ and let $f(t) \in \text{ker}(ev)$. Then, for all $a \in \mathbb{R}$ we have that $ev(f)(a) = f(a) = 0$, which implies that all elements of $\mathbb R$ are roots of f. As f can have at most deg(f) real roots, we conclude that $f = 0$.

Exercice 3.

Let $\xi : F[x, y] \to A$ be the quotient homomorphism and for $f \in F[x, y]$ let $\overline{f} = \xi(f)$.

We first note that $(\overline{xy}) \subseteq \text{nil}(A)$.

Let $(\overline{x}) \subseteq A$. By Exercise 3.1 of Series 4 we have that $\xi^{-1}(\overline{x}) = (x, x^2y^3) = (x)$, as $x^2y^3 \in (x)$ and by Proposition 1.4.41 we deduce that (\bar{x}) is a prime ideal of A as:

 $A/(\overline{x}) \cong F[x, y]/(x) \cong F[y]$ is an integral domain.

Analogously one shows that $(\overline{y}) \subseteq A$ is a prime ideal.

We now consider the intersection $(\overline{x}) \cap (\overline{y})$. Let $\overline{f} \in (\overline{x}) \cap (\overline{y})$. Then, in particular, $\overline{f} \in (\overline{x})$ and so $\overline{f} = \overline{x} \cdot \overline{g}$, for some $\overline{g} \in A$. On the other hand, we have that $\overline{f} \in (\overline{y})$, hence $\overline{x} \cdot \overline{g} \in (\overline{y})$ and, as (\overline{y}) is prime, it follows that $\overline{g} \in (\overline{y})$. Therefore $\overline{f} = \overline{x} \cdot \overline{g} = \overline{x} \cdot \overline{y} \cdot \overline{h} = \overline{xy} \cdot \overline{h}$ for some $\overline{h} \in A$ and we deduce that $\overline{f} \in (\overline{xy})$. As the inclusion $(\overline{xy}) \subset (\overline{x}) \cap (\overline{y})$ is immediate, we determine that $(\overline{x}) \cap (\overline{y}) = (\overline{xy}).$

Finally we have that

$$
\mathrm{nil}(A) = \bigcap_{\overline{p} - \text{prime}} \overline{p} \subseteq (\overline{x}) \cap (\overline{y}) = (\overline{xy})
$$

and we conclude that $\text{nil}(A) = (\overline{xy}) = (\overline{x}) \cap (\overline{y})$.

Exercice 4. (a) We first note that $\mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$ is an \mathbb{F}_p -algebra: $\mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$ is a commutative ring and $\psi : \mathbb{F}_p \to \mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$ given by $\psi(a) = a \cdot [0]$, for $a \in \mathbb{F}_p$, is a ring homomorphism with the property that $\psi(\mathbb{F}_p) \subseteq \mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$. In particular, we have that $\mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$ is an \mathbb{F}_p vector space with basis $\{[0], [g], [2g], \ldots, [(p-1)g] \}$, where $[g]$ is a fixed generator of $\mathbb{Z}/p\mathbb{Z}$.

We now consider the evaluation homomorphism

$$
ev_{[g]} : \mathbb{F}_p[x] \to \mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]
$$

$$
ev_{[g]}(x) = 1 \cdot [g].
$$

We have that $(x^p - 1) \subseteq \ker(\text{ev}_{[g]})$, as $\text{ev}_{[g]}(x^p - 1) = 1 \cdot [pg] - 1 \cdot [0] = 0$. On the other hand, as \mathbb{F}_p is a field, by Corollary 2.2.5, it follows that $\mathbb{F}_p[x]$ is a principal ring and thus there exists

 $f \in \mathbb{F}_p[x]$ such that $\ker(\text{ev}_{[g]}) = (f)$. Therefore, as $x^p - 1 \in (f)$, it follows that $x^p - 1 = f \cdot g$ for some $g \in \mathbb{F}_p[x]$ and by Lemma 2.1.1 we deduce that $\deg(f) \leq p$.

We write
$$
f(x) = \sum_{i=0}^{p} a_i x^i
$$
, where $a_i \in \mathbb{F}_p$. Then:
\n
$$
ev_{[g]}(f(x)) = \sum_{i=0}^{m} a_i \cdot [ig] = (a_0 + a_p) \cdot [0] + \sum_{i=1}^{p-1} a_i \cdot [ig] = 0
$$

and, as $[0], [g], [2g], \ldots, [(p-1)g]$ are linearly independent, we have $a_0 = -a_p$ and $a_i = 0$ for all $1 \leq i \leq p-1$. We deduce that $f(x) = a_p(x^p-1)$, where $a_p \in \mathbb{F}_p$, and thus ker(ev_[g]) = (x^p-1) . In conclusion, we have shown that $\mathbb{F}_p[x]/(x^p - 1) \cong \mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$.

(b) Recall that the characteristic is the natural number n such that $n\mathbb{Z}$ is the kernel of the unique ring homomorphism from $\mathbb Z$ to $\mathbb F_p[\mathbb Z/p\mathbb Z]$. Note the unique ring homomorphism from Z to $\mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$ sends $x \in \mathbb{Z}$ to $[x]_p \in \mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$. Its kernel is $p\mathbb{Z}$ therefore $\mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$ has characteristic p.

(c) Let
$$
a = \sum_{i=0}^{p-1} a'_i \cdot ([g] - 1)^i
$$
 be an idempotent element of $\mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$. Then

$$
a^{2} = \sum_{i,j} a_{i} a_{j} \cdot [(i+j)g] = \sum_{k=0}^{p-1} a_{k} \cdot [kg] = a
$$

and, as $[0], [g], \ldots, [(p-1)g]$ are linearly independent, it follows that $a_k = \sum$ $i+j=k$ $a_i a_j$ for all $0 \le k \le p-1$. In particular, we have $a_0 = a_0^2$ and so $a_0 = 0$ or $a_0 = 1$. As $a_1 = a_0 a_1 + a_1 a_0$ we see that in both cases we obtain $a_1 = 0$. Recursively, we deduce that

$$
a_{k+1} = \sum_{i+j=k+1} a_i a_j = a_0 a_{k+1} + \left(\sum_{\substack{i+j=k+1 \ 1 \le i,j \le k}} a_i a_j \right) + a_0 a_{k+1} = a_0 a_{k+1} + a_{k+1} a_0
$$

and therefore $a_{k+1} = 0$. Hence, if $a_0 = 0$, it follows that $a = 0$ $[0]$, while, if $a_0 = 1$, it follows that $a = 1 \cdot [0]$. We have shown that the only idempotents of $\mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$ are $0 \cdot [0]$ and $1 \cdot [0]$. By Proposition 2.4.55 and Remark 2.4.56 we conclude that $\mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$ cannot be decomposed as a product of non-zero rings.

Exercice 5.

EXETCLE 3.
We define $N : \mathbb{Z}[\sqrt{2}i] \to \mathbb{N} \cup \{-\infty\}$ by $N(x + \sqrt{2}i)$ $\overline{2}iy) = x^2 + 2y^2$. We will show that $(\mathbb{Z}[\sqrt{2}y])$ $[2i], N)$ is an Euclidean domain. √ √

Let $0 \neq a \in \mathbb{Z}[\sqrt{2}i]$, where $a = x +$ $\overline{2}i\Big]$, where $a = x + \sqrt{2}iy$. Then $N(a) = x^2 + 2y^2 \in \mathbb{N}$. Let $0 \neq a \in \mathbb{Z}[\sqrt{2}i]$, where $a = x + \sqrt{2}iy$. Then $N(a) = x^2 + 2y^2 \in \mathbb{N}$.
Now let $a, b \in \mathbb{Z}[\sqrt{2}i]$, where $a \neq 0$. We want to show that there exist $q, r \in \mathbb{Z}[\sqrt{2}i]$. 2i] such that

$$
b = qa + r
$$
 and
$$
N(r) < N(a)
$$
.

Consider the complex number $\frac{b}{a}$. There exist $s, t \in \mathbb{R}$ such that $\frac{b}{a} = s + t$ $\sqrt{2}i$. Let $x, y \in \mathbb{Z}$ be such that $|s-x| \leq \frac{1}{2}$ and $|t-y| \leq \frac{1}{2}$. Then $x+y$ $\sqrt{2}i \in \mathbb{Z}[\sqrt{\}]$ 2i] and

$$
N((s + t\sqrt{2}i) - (x + y\sqrt{2}i)) \le \left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right)^2 = \frac{3}{4}.
$$

Let $q = x + y$ √ $\overline{2}i$ and let $r = b - aq$. Then $r = \frac{r}{a}$ $\frac{r}{a} \cdot a = \left(\frac{b}{a} - q\right) a$ and

$$
N(r) = N\left(\frac{b}{a} - q\right)N(a) \le \frac{3}{4}N(a) < N(a).
$$

1 Supplementary exercise

Exercice 6. (a) Let \sum g∈G $a_g \cdot g \in \mathbb{Z}(A)$ and let $h \in G$. Then $1 \cdot h \in A$ is invertible with inverse

$$
(1 \cdot h)^{-1} = 1 \cdot h^{-1}
$$
 and we have

$$
(1 \cdot h)(\sum_{g \in G} a_g \cdot g)(1 \cdot h)^{-1} = \sum_{g \in G} a_g \cdot hgh^{-1} = \sum_{g' \in G} a_{h^{-1}g'h} \cdot g' = \sum_{g' \in G} a_{g'} \cdot g'.
$$

It follows that $a_{h^{-1}gh} = a_g$ for all $h \in G$ and thus the map $g \to a_g$ is constant over equivalence classes.

Conversely, assume that $g \to a_g$ is constant over equivalence classes. Let $1 \cdot h \in A$. Then:

$$
(1 \cdot h)(\sum_{g \in G} a_g \cdot g)(1 \cdot h)^{-1} = \sum_{g' \in G} a_{h^{-1}g'h} \cdot g' = \sum_{g' \in G} a_{g'} \cdot g
$$

 \overline{a}

and thus

$$
(1 \cdot h)(\sum_{g \in G} a_g \cdot g) = (\sum_{g \in G} a_g \cdot g)(1 \cdot h), \text{ for all } h \in G.
$$

Therefore

$$
\left(\sum_{h\in G} a_h \cdot h\right)\left(\sum_{g\in G} a_g \cdot g\right) = \sum_{h\in G} a_h \cdot h \sum_{g\in G} a_g \cdot g = \sum_{h\in G} a_h \left(\sum_{g\in G} a_g g\right) h = \left(\sum_{g\in G} a_g \cdot g\right)\left(\sum_{h\in G} a_h \cdot h\right)
$$

and consequently
$$
\sum_{g\in G} a_g \cdot g \in \mathbb{Z}(A).
$$

(b) Fix $A = \mathbb{C}[S_3]$. By (a) we have that $e_1, e_2, e_3 \in \mathbb{Z}(A)$. We will now show that they are idempotents. First,

$$
e_1^2 = \frac{1}{36} \left(\sum_{g \in S_3} g \right) \left(\sum_{h \in S_3} h \right)
$$

=
$$
\frac{1}{36} \left[\sum_{g \in S_3} g + \sum_{g \in S_3} g(12) + \sum_{g \in S_3} g(13) + \sum_{g \in S_3} g(23) + \sum_{g \in S_3} g(123) + \sum_{g \in S_3} g(132) \right]
$$

=
$$
\frac{1}{6} \sum_{g \in S_3} g = e_1.
$$

In the above we have used the fact that for all $x \in S_3$, the map $S_3 \to S_3$ sending $a \to ax$ is bijective. Hence \sum $_{g\in S_3}$ $gx = \sum$ $g{\in}S_3$ g for all $x \in S_3$. Secondly,

$$
e_2^2 = \frac{1}{36} \left(\sum_{g \in S_3} \text{sgn}(g)g \right) \left(\sum_{h \in S_3} \text{sgn}(h)h \right)
$$

\n
$$
= \frac{1}{36} \left[\sum_{g \in S_3} \text{sgn}(g)g - \sum_{g \in S_3} \text{sgn}(g)g(12) - \sum_{g \in S_3} \text{sgn}(g)g(13) - \sum_{g \in S_3} \text{sgn}(g)g(23) + \sum_{g \in S_3} \text{sgn}(g)g(123) + \sum_{g \in S_3} \text{sgn}(g)g(132) \right]
$$

\n
$$
= \frac{1}{36} \left[\sum_{g \in S_3} \text{sgn}(g)g - \sum_{g \in S_3} \text{sgn}(g(12))g - \sum_{g \in S_3} \text{sgn}(g(13))g - \sum_{g \in S_3} \text{sgn}(g(23))g + \sum_{g \in S_3} \text{sgn}(g(132))g + \sum_{g \in S_3} \text{sgn}(g(123))g \right]
$$

\n
$$
= \frac{1}{6} \sum_{g \in S_3} \text{sgn}(g)g = e_2.
$$

In the above we have used the fact that $sgn(\sigma \tau) = sgn(\sigma) sgn(\tau)$ for all $\sigma, \tau \in S_3$. Lastly, we will show that f_1 and f_2 are idempotents and that $f_1f_2 = f_2f_1 = 0$. We have that:

$$
f_1^2 = \frac{1}{9} \left[\text{Id} + \varepsilon (123) + \varepsilon^2 (132) + \varepsilon (123) + \varepsilon^2 (132) + \text{Id} + \varepsilon^2 (132) + \text{Id} + \varepsilon (123) \right]
$$

= $\frac{1}{3} \left[\text{Id} + \varepsilon (123) + \varepsilon^2 (132) \right] = f_1.$

Analogously one shows that $f_2^2 = f_2$. Keeping in mind that $\varepsilon^2 + \varepsilon = -1$, we have

$$
f_1 f_2 = \frac{1}{9} \left[\text{Id} + \varepsilon (123) + \varepsilon^2 (132) + \varepsilon^2 (123) + (132) + \varepsilon \text{ Id} + \varepsilon (132) + \varepsilon^2 \text{ Id} + (123) \right]
$$

= $\frac{1}{9} (1 + \varepsilon + \varepsilon^2) \left[\text{Id} + (123) + (132) \right] = 0.$

Analogously one shows that $f_2f_1 = 0$. Therefore $e_3^2 = (f_1 + f_2)^2 = f_1^2 + f_1f_2 + f_2f_1 + f_2^2 =$ $f_1 + f_2 = e_3.$

We have shown that e_1, e_2, e_3 are central idempotents. We will now show that they are pairwise orthogonal. We have

$$
e_1e_2 = \frac{1}{36} \bigg[\sum_{g \in G} g - \sum_{g \in G} g(12) - \sum_{g \in G} g(13) - \sum_{g \in G} g(23) + \sum_{g \in G} g(123) + \sum_{g \in G} g(132) \bigg] = 0.
$$

Analogously one shows that $e_2e_1=0$. We note that $e_3=\frac{1}{3}$ $\frac{1}{3}(2\,\text{Id} - (123) - (132))$. Then

$$
e_1 e_3 = \frac{1}{18} \left[2 \sum_{g \in G} g - \sum_{g \in G} g(123) - \sum_{g \in G} g(132) \right] = 0
$$

and

$$
e_2 e_3 = \frac{1}{18} \left[2 \sum_{g \in G} \text{sgn}(g) g - \sum_{g \in G} \text{sgn}(g) g(123) - \sum_{g \in G} \text{sgn}(g) g(132) \right]
$$

=
$$
\frac{1}{18} \left[2 \sum_{g \in G} \text{sgn}(g) g - \sum_{h \in G} \text{sgn}(h(132)) h - \sum_{h \in G} \text{sgn}(h(123)) h \right]
$$

= 0.

Now $e_1 + e_2 = \frac{1}{3}$ $\frac{1}{3}[\text{Id} + (123) + (132)]$ is a central idempotent in A, as $(e_1 + e_2)^2 = e_1^2 + e_1e_2 +$ $e_2e_1 + e_2^2 = e_1 + e_2$. Furthermore, one checks that $(e_1 + e_2)e_3 = 0$ and $e_1 + e_2 + e_3 = Id$. Thus, by Proposition 1.4.55, we have that $A \cong A(e_1 + e_2) \times Ae_3$.

Similarly, e_1 and e_2 are central orthogonal idempotents in $A(e_1 + e_2)$ and, as $e_1 + e_2$ is the identity in $A(e_1+e_2)$, we once more apply Proposition 1.4.55 to obtain $A(e_1+e_2) \cong Ae_1 \times Ae_2$. We have shown that:

$$
A \cong Ae_1 \times Ae_2 \times Ae_3.
$$

(c) Let $x \in Ae_1$. Then $x = ye_1$, where $y = a_0 \text{ Id } + a_1(12) + a_2(13) + a_3(23) + a_4(123) + a_5(132) \in A$. We compute

$$
x = a_0 \sum_{g \in G} g + a_1 \sum_{g \in G} g(12) + a_2 \sum_{g \in G} g(13) + a_3 \sum_{g \in G} g(23) + a_4 \sum_{g \in G} g(123) + a_5 \sum_{g \in G} g(132)
$$

= $(a_0 + a_1 + a_2 + a_3 + a_4 + a_5) \sum_{g \in G} g$
= $(\sum_{i=0}^{5} a_i)e_1$.

Therefore if $x \in Ae_1$ then $x = c_xe_1$, for some $c_x \in \mathbb{C}$. Analogously, one shows that if $x \in Ae_2$ then $x = c_xe_2$, for some $c_x \in \mathbb{C}$. (In this case, computations will show that $c_x = a_0 - a_1 - a_2 - a_3 + a_4 + a_5.$

For $i = 1, 2$ consider the map $\varphi : Ae_i \to \mathbb{C}$ given by $\varphi(x) = c_x$. One checks that φ is a ring isomorphism and concludes that $Ae_i \cong \mathbb{C}$, for $i = 1, 2$.

(d) Let $x \in Ae_3$. Then $x = ye_3$, where $y = a_0 \text{Id} + a_1(12) + a_2(13) + a_3(23) + a_4(123) + a_5(132) \in A$. We compute

$$
y f_1 = (a_0 + a_5 \varepsilon + a_4 \varepsilon^2) f_1 + (a_1 + a_2 \varepsilon + a_3 \varepsilon^2) (12) f_1
$$

and

$$
y f_2 = (a_0 + a_4 \varepsilon + a_5 \varepsilon^2) f_2 + (a_1 + a_3 \varepsilon + a_2 \varepsilon^2) (12) f_2
$$

to determine that

$$
x = (a_0 + a_5\varepsilon + a_4\varepsilon^2)f_1 + (a_1 + a_2\varepsilon + a_3\varepsilon^2)(12)f_1 + (a_0 + a_4\varepsilon + a_5\varepsilon^2)f_2 + (a_1 + a_3\varepsilon + a_2\varepsilon^2)(12)f_2
$$

= $x_1f_1 + x_2(12)f_1 + x_3(12)f_2 + x_4f_2$,

where $x_1, x_2, x_3, x_4 \in \mathbb{C}$.

Define the map $\varphi : Ae_3 \to M_2(\mathbb{C})$ by $\varphi(x) = \begin{pmatrix} x_1 & x_3 \\ x_2 & x_1 \end{pmatrix}$ x_2 x_4). Clearly φ is a bijective map, $\varphi(x + y) = \varphi(x) + \varphi(y)$ for all $x, y \in Ae_3$ and $\varphi(e_3) = I_2$. What remains to show is that $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in Ae_3$.

We first remark that

$$
(12) f_1 = \frac{1}{3} [(12) + \varepsilon(23) + \varepsilon^2(13)] = f_2(12)
$$

and

$$
f_1(12) = \frac{1}{3}[(12) + \varepsilon(13) + \varepsilon^2(23)] = (12)f_2.
$$

Now, keeping in mind that $f_1^2 = f_1$, $f_2^2 = f_2$, $f_1 f_2 = f_2 f_1 = 0$, $(12) f_1 = f_2(12)$ and $f_1(12) = (12)f_2$, we have

$$
xy = (x_1f_1 + x_2(12)f_1 + x_3(12)f_2 + x_4f_2)(y_1f_1 + y_2(12)f_1 + y_3(12)f_2 + y_4f_2)
$$

\n
$$
= x_1y_1f_1^2 + x_2y_1(12)f_1f_1 + x_3y_1(12)f_2f_1 + x_4y_1f_2f_1 + x_1y_2f_1(12)f_1 + x_2y_2(12)f_1(12)f_1 +
$$

\n
$$
+ x_3y_2(12)f_2(12)f_1 + x_4y_2f_2(12)f_1 + x_1y_3f_1(12)f_2 + x_2y_3(12)f_1(12)f_2 + x_3y_3(12)f_2(12)f_2 +
$$

\n
$$
+ x_4y_3f_2(12)f_2 + x_1y_4f_1f_2 + x_2y_4(12)f_1f_2 + x_3y_4(12)f_2f_2 + x_4y_4f_2^2
$$

\n
$$
= x_1y_1f_1 + x_2y_1(12)f_1 + x_3y_2f_1 + x_4y_2(12)f_1 + x_1y_3(12)f_2 + x_2y_3f_2 + x_3y_4(12)f_2 + x_4y_4f_2
$$

\n
$$
= (x_1y_1 + x_3y_2)f_1 + (x_2y_1 + x_4y_2)(12)f_1 + (x_1y_3 + x_3y_4)(12)f_2 + (x_2y_3 + x_4y_4)f_2.
$$

Thus $\varphi(xy) = \begin{pmatrix} x_1y_1 + x_3y_2 & x_1y_3 + x_3y_4 \\ x_1y_3 + x_2y_4 & x_3y_4 \end{pmatrix}$ $x_2y_1 + x_4y_2$ $x_2y_3 + x_4y_4$ $= \begin{pmatrix} x_1 & x_3 \\ x & x_2 \end{pmatrix}$ x_2 x_4 $\bigg) \cdot \bigg(y_1 \quad y_3$ y_2 y_4 $\Big) = \varphi(x)\varphi(y)$. We conclude that φ is a ring isomorphism and thus $Ae_3 \cong M_2(\mathbb{C})$.