Theory and Methods for Reinforcement Learning

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 6: Policy Gradient 2

Laboratory for Information and Inference Systems (LIONS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

EE-618 (Spring 2022)

. stirrune @ SDSC r
lions@epfl i Google Al [ ‘ ‘




License Information for Theory and Methods for Reinforcement Learning (EE-618)

> This work is released under a Creative Commons License with the following terms:
> Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

> Non-Commercial

> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the
work for commercial purposes — unless they get the licensor's permission.

> Share Alike

> The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor's work.

> Full Text of the License

ICLHEEIN  Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 2/ 31


http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

Recap: Policy-based methods

Policy optimization (episodic reward)

oo
max J(m9) == E | > 7'r(st,ar)lso ~ 1,0 | = Eanu[V70(s)]
t=0
Tabular parametrization Non-tabular parametrization
> Direct : > Softmax:

exp(fo(s,))
wren@D(fo(s,a))

g (als) = 0s,a, with 054 > O,Z 050 —1 m(als) = 5=

> Softmax:

> Gaussian:
eXP(Gs,a)

o(als) = N W) mo(als) ~ N (no(s), o3 (s))
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Recap: Policy gradient theorems

o Recall that py(7) is the trajectory distribution and A (s) is the discounted state visitation distribution.
Policy gradient theorems

> REINFORCE expression is given by

VoJ(mg) = Ermp, | R(T) ( i Vg logﬂe(adst))

t=0

> Action-value expression is given by

oo
VQJ(TI'Q) = ETNPQ Z,thﬂ'g (St7 at)Vg log Y] (at|st)
t=0

=—E

I Q7 (s,a)Vglogmg(als)] .
-7

SN)\ZG ,arvmg (+]s) [
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Policy gradient in tabular setting

o Direct parametrization: mg(als) = 0s.q

0J(mg) 1 |, o
905 4 = 1_7/\;1 (S)Q (s,a)

o Softmax parametrization: mp(als) o exp(0s,q)

1
S = N (el A (5,0)
Proofs: o Recall that VyJ(mg) = ﬁ Zs Al (s) Za Q7 (s,a)Vemg(als).

. . Omglals) _ ol T
o Direct case: vl 1{s=s",a=4d'}.

Omg (als)
805/#/

o Softmax case: =mg(als)1{s = s';a=a’'} — mg(a|s)mg(a’|s)1{s = s'}.
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Optimization challenge I: Nonconcavity
o In general, the objective J(my) is nonconcave.
o This holds even for tabular setting with direct or softmax parametrization.

Example (direct parametrization)

0 0 V™ (s1) = w(az|s1)m(a1|s2)r.
» Consider Tmig = Lzm, where
0 mi(azls1) = 3/4, m1(a1|s2) = 3/4;
0 r>0 m2(az|s1) = 1/4, ma(a1|s2) = 1/4;
Tmid(az2|s1) = 1/2, Tmid(a1(s2) = 1/2.

a1: move up, az: move right SV E) = l%r’ V(s = %T.
> Vmid(s1) = ir < %(V771 (s1) + V72(s1)).
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Optimization challenge I: Nonconcavity
o In general, the objective J(mg) is nonconcave.
o This holds even for tabular setting with direct or softmax parametrization.

Example (softmax parameterzation)

0 0 0= (0a1,s1+0a2,s1: 001,525 0as,55):
7] 0
e 22,51 e 41,52
V70 (s1) =
- efa1.01 4 efaz.ar gfaren 4 faz.o
> Consider
0 0 0
r> 61 = (log 1,log 3,log 3,log 1),

0 0 02 = (—log1,—log3,—log3,—log1),
S1 \5-2/ @ Omia = (01 + 62)/2 = (0,0,0,0).
L V(1) = BV (s1) = o

aj: move up, az: move right 6
> V7 O0mid (51) = %r < %(Vﬂ—el (81) + Vo2 (81)).
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Convergence to stationary points (see Lecture 1)

Convergence of exact policy gradient method: 0;11 = 0; + o,V J(my,) (Nesterov, 2004 [7])

If the objective J(mg) is L-smooth and set oy = % then we have the following guarantee:

. 2L(J (mgx) — J(ma,))
2 < W 5
t=0n T -1 IV (mor)ll2 < T

Convergence of stochastic policy gradient method: 6,11 = 0; + atﬁgJ(Mt)
(Ghadimi and Lan, 2013 [3])

If the objective J(my) is L-smooth and @gJ(wg) is unbiased and has bounded variance by o2, then with a
proper choice of the step-size, we have the following guarantee:

. 21 —
ommT—lE [||V9J(ﬂ'9f,)H2] =0

=0000g

\/ L(J(mg+) — J(mg,))0
T

Questions: Can these rates be further improved? Do stationary points imply good performance?
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Optimization challenge Il: Vanishing gradient and saddle points

o In general, there are no guarantees on the quality of stationary points.
o Vanishing gradients can happen when using softmax parametrization.

o Vanishing gradients can happen when lacking sufficient exploration [1].

H

Figure: Example with H + 2 states and v = TEn rewards are
everywhere 0 except at sg41. For small order p and 6 such

ef — 1

) . . H/4
Figure: Softmax function: Tre T i that 0, o, < % for all s [1]: [VPV™0 (s0)|| < (%) / ]

IHETIl  Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 9/ 31 EPFL



A simple example

V(B) Landscape.

Figure: MDP with 2 states and 2 actions

Figure: V'™ (B) under direct parametrization
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A simple example (cont’d)

V(B), :0.9, stepsize:0.01, iter:100, initial: (0.1,0.1) V(B), 7:0.9, stepsize:0.01, iter:100, initial: (0.5,0.1)

V(B), 7:0.9, stepsize:0.01, iter:100, initial: (0.25,0.25)

Figure: PG with different initial points
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A simple example (cont’d)

V(B), 7:0.9, stepsize:0.01, iter:100

V(B), 7:0.9, stepsize:0.05, iter:100

V(B), 7:0.9, stepsize:0.1, iter:100

V(B), 7:0.9, stepsize:1, iter:100

Figure: PG with different stepsizes

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 31 EPFL



Fundamental questions

Question 1

When do policy gradient methods converge to an optimal solution? If so, how fast?
Remarks: o Optimization wisdom: GD/SGD could converge to the global optima for “convex-like” functions:
J(@*) = J(x) = O(|V I (m)]).
o Focus on tabular setting with exact gradient.
Question 2
How to avoid vanishing gradients and improve the convergence?
Remarks: o Optimization wisdom: Use divergence with good curvature information.

o Switch to natural policy gradient by exploiting geometry.
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Performance difference lemma (PDL)

Performance difference lemma (Kakade and Langford, 2002 [?])

For any two policy 7, 7/, the following holds

1 ’
J(Tr) - J(ﬂ—l) = ﬁEswkﬁ, a~T(-|s) |:A7r (S’a)] o

Remarks: o Here \J(s) = (1 — W)E[Ezo 145,253 |50 ~ i, ] is the state visitation distribution.
o Here A™(s,a) = Q7 (s,a) — V™ (s) is the advantage function.
o Can be used to show policy improvement theorem for policy iteration (self-exercise).
o Can also be used to show policy gradient theorem (self-exercise).

o Proof follows from definition of value functions.
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Proof of performance difference lemma

Derivation: V7 (s) — v (8) =Brep_(r) [Z'ytr(st, at)|so = s] — V”/(s)
t=0

=Erp () [Z 7t (r(st, at) + V”/(st) — V”,(st)) [so = s] - V’T/(s)
tO:oO
=Erep, ([ D7 (rlstya0) V™ (se41) = V™ (50)) Iso = s
to:o()
=Erp, (n) [ZWt (7‘(81‘,-, ag) + 7 i,s,,HNP(.\,sf.af)[Vﬂl(St+1)] -vr (St)) [so = S]
t=0
= E‘rr\zpw(‘r) [Z’yt (Qﬂ/ (Sl‘ﬂ (lt) - Vﬂ/(st)) ‘50 = 8}
t=0

oo
’
=Ernp, (n) [Z 7 AT (st, ar)lso = S}
t=0
Remark: o We use a telescoping trick to go from line 2 to line 3!
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Key insight: Policy optimization is convex-like in the full policy space

o Performance difference lemma:

1 *
(@) = Im) = 7= D N ) D 7 (als)A™(s,a).
o Policy gradient theorem (tabular setting):
1
;7;](732) = ﬁAZ(S)QW (s,a) (direct parametrization).
oJ(m) 1 . . L
——= = ——X;(s)n(a|s)A"(s,a) (softmax parametrization).

om(als) 1—7
o This seems to imply gradient dominance type properties:
J(7*) = J(m) = O(IVJ(m)])),

which is crucial to ensure global optimality.
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Policy optimization

o We first consider the direct parametrization in the tabular setting.

Policy optimization under direct parametrization

max _ J(7) := Esnp [V (5)],
meA(A)ISI

where A(A)ISI = {x : n(als) > O’ZuGA m(als) = 1,Vs}. For brevity, we denote this set as A.

Remarks: o If m € A is optimal, then it satisfies the first-order optimality condition:
(r—m, VJ(m) <0,V 7 €A,

or equivalently, maxzca (7 —m, VJ(m)) = 0.

o Does the reverse statement hold?
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Gradient dominance property

Gradient mapping domination

AT
J(m*) = J(m) < HL ‘ x max(w — m, VJ(7)).
ALl 7wea
Remarks: o Any first-order stationary point is thus globally optimal.
A"
o The term /\L,r is called the distribution mismatch coefficient, which captures the
© oo

hardness of the exploration problem. Note that in the aforementioned vanishing gradient
example, this coefficient can be very exponentially large.

s

A
7
AL

. since VY, AT (s) 2> (1 —v)u(s).

oo

AT*
o Note that max, %

= 1
oo

o Proof follows by combining performance difference lemma and policy gradient theorem.
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Proof of gradient dominance

a)

Derivation: J(n*) — J(x) = % Z AL (s) Z 7*(a|s)A™ (s, a)
:ﬁ M S) HS)ZW (als)A™ (s, a)
< ﬁ A)\% N X glggZAﬂ(s)ﬁ(ab)A”(s,
= ﬁ A; o ;ng%ﬁ(s)(fr(a\s) — n(als)A™ (s, 0)
<= AA x ggX;AE(S)(ﬁ(a\S) —7(als)Q"(s,a)
- ‘ AALW X max{s =, V()
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Projected policy gradient method

Projected policy gradient method

mi+1 = (7 + 0V I (7)),

where the projection is given by I (1) = argmin,/ca |7 — 7'||3.

Remarks: o Take a gradient ascent step and project onto the simplex set (can be computed efficiently).
o Generalized gradient mapping: G(m¢) = % (m¢+1 — mt), or equivalently, w11 = ¢ +nG (7).
o If w is optimal, then G(7) = 0. (why?)
o Convergence on gradient mapping [6]: If J(7) is L-smooth, then we have

i 6(m) 3 < 20 =0
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Convergence of projected policy gradient method

Theorem (Agarwal et al., 2020 [1])

3
Assume access to exact gradient. Let n = (;;Ij‘\)\ . Then, the following holds
8 /7SI Al || A7*
min J(7*) — J(m¢) < ¢ £ .
t<T (1—7)3 VT || p -

Proof sketch: o Show that the objective J(m) is L-smooth with L = 2UAL and J(m) < .
(1-7)3 1=y

*
o Invoke convergence on gradient mapping: min;<r ||G(m¢)||% < M
o Invoke the relationship between gradient mapping and approximation of stationary point [6]:

I}lgﬁ(fr — 741, VI (1)) < (14 Ln) - |G(7e)ll2 - [|7e4+1 — 7el|2-

(o}

Use the gradient dominance for global convergence.
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A closer look at the convergence

Theorem (Agarwal et al., 2020 [1])

3
Assume access to exact gradient. Let n = ot Dl Then, the following holds

27| A]
8/7|S||A| || A7
min J(7*) — J(m¢) < w -+
t<T (1=y3VT| » ||

Remarks: o Large constants in the bound.
o Slow rate in T

o Analysis can be refined with improved convergence rate of O (%) using Nesterov's result in
(Nesterov, 2004 [7]).

o But wait, in tabular setting, VI or Pl converges linearly, which is much faster.

o (New!) Linear convergence of PG can be shown with larger stepsizes (through line-search)
(Bhandari and Russo, 2021 [2]).
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A closer look at the PG method

o The projected PG update can also be viewed as
Tt = M (me + 0V I (7))

1
= arg max {(VJ(ﬂ't)Jr) - —||lr— Wt\\g} .
TEA 2n

o As 7 — oo, this reduces to the policy iteration update:

meri(ls) = argmax Y w(s|a)Q™ (s,a).

7(-]s)EA(A) -

o In other words, policy gradient method can be viewed as an approximation of policy iteration

1 1
argmaX{WJ(m)ﬂr) - —||7rme§} - argmax{@“awm - f,uwfmn%}

TEA 2n TEA s 2n

087;7(27‘;)) = ﬁAZ(s)Q’T(s,a) and (-, '>>‘ﬁ is the reweighted inner product by A7}

where
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From gradient descent to mirror descent: Exploiting the non-euclidean geometry

o We can adapt PG in the simplex with mirror descent updates:

Teg1 o= argmax { (V.J(m), ™ _foff ()KL ((-]8)[|me(|5)) %,
TEA

where KL (pl|lq) = Z p; log (p‘) is the Kullback-Leibler divergence.

o The policy mirror descent update can be further simplified as

exp(nQ*(s,a)/(1 - 7))
o m(@']8) exp(nQt(s,a’)/(1 =)

m11(als) :ﬂt(GIS)Z

o This is akin to natural policy gradient under softmax parameterization.

o As 1 — o0, this also reduces to the policy iteration update.
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Policy optimization

o We now consider the softmax parametrization in the tabular setting.

Policy optimization under softmax parametrization

exp(fs,a)
Za’ eXp(es,a’) .

max J(79) :=Bs~u[V7™(s)], where my(als) =

Softmax policy gradient method

%;ii) N ﬁAZ" (s)mo(als)A™ (s, a).

Oi+1 = 0t +nVgJ(mg,), where
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Gradient dominance and global convergence

Gradient dominance (Mei et al., 2020 [5])

A

J(7*) = J (7o) < [msimre(a*(S)IS)]_1 Vs )\% VoI (mo)ll2-
s

o

Convergence of softmax policy gradient (Mei et al., 2020 [5])

3
Assume access to exact gradient, let n < %. Then, the following holds
112
16|S| AL
J(r*) —J < —— (== ,
()~ Imor) < e yer ||

where ¢ = [mins,; 7, (a*(s)|s)] ! > 0.

Remark:

o Proof follows similarly as the tabular setting with slow rate and large constants in the bound.
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Natural policy gradient method (NPG)

Natural policy gradient (Kakade, 2002 [4])

011 = 0¢ +1(Fp,) VI (m,),
where

> Fy is the Fisher information matrix:

Fy=E [Vg log g (als) Vg log 7rg(a|s)T] .

s~AR0 anmg(-]s)

> C1 is the pseudoinverse of the matrix C.
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NPG under softmax parameterization

exp(fs,a)

and denote m; = Ty, .
o exp(QS,a/)

o Consider mg(als) = >
NPG parameter update

Ory1 =0t + /LTS
1—v

NPG policy update = policy mirror descent

mey1(als) = me(als) exp(nA™ (s,a)/(1 = 7)) :
> me(@ls) exp(nAT (s, ') /(1 — 7))
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Convergence of NPG

Convergence of NPG with softmax parameterization [1]
Assume access to A™0. For any > (1 —v)?log|A| and T > 0, we have the following

2

J(m*) = J(mo,) < m

Remarks: o Dimension-free convergence, no dependence on | A, |S]|.

o No dependence on distribution mismatch coefficient.

Questions: Why? What about function approximation setting? Can we further improve the convergence?
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Next week!

o Recap on policy gradient methods

o Introduction to natural policy gradient method
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