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Recap: Policy-based methods

Policy optimization (episodic reward)

max
θ

J(πθ) := E

[
∞∑
t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)]

Tabular parametrization

I Direct :

πθ(a|s) = θs,a, with θs,a ≥ 0,
∑

a
θs,a = 1

I Softmax:

πθ(a|s) =
exp(θs,a)∑

a′∈A exp(θs,a′ )

Non-tabular parametrization

I Softmax:

πθ(a|s) =
exp(fθ(s, a))∑

a′∈A exp(fθ(s, a′))

I Gaussian:

πθ(a|s) ∼ N
(
µθ(s), σ2

θ(s)
)
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Recap: Policy gradient theorems

◦ Recall that pθ(τ) is the trajectory distribution and λπµ(s) is the discounted state visitation distribution.

Policy gradient theorems

I REINFORCE expression is given by

∇θJ(πθ) = Eτ∼pθ

[
R(τ)

( ∞∑
t=0

∇θ log πθ(at|st)
)]

.

I Action-value expression is given by

∇θJ(πθ) = Eτ∼pθ

[
∞∑
t=0

γtQπθ (st, at)∇θ log πθ(at|st)

]
=

1
1− γ

E
s∼λπθµ ,a∼πθ(·|s) [Qπθ (s, a)∇θ log πθ(a|s)] .
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Policy gradient in tabular setting

◦ Direct parametrization: πθ(a|s) = θs,a

∂J(πθ)
∂θs,a

=
1

1− γ
λ
πθ
µ (s)Qπθ (s, a)

◦ Softmax parametrization: πθ(a|s) ∝ exp(θs,a)

∂J(πθ)
∂θs,a

=
1

1− γ
λ
πθ
µ (s)πθ(a|s)Aπθ (s, a)

Proofs: ◦ Recall that ∇θJ(πθ) = 1
1−γ

∑
s
λ
πθ
µ (s)

∑
a
Qπθ (s, a)∇θπθ(a|s).

◦ Direct case: ∂πθ(a|s)
∂θs′,a′

= 1{s = s′, a = a′}.

◦ Softmax case: ∂πθ(a|s)
∂θs′,a′

= πθ(a|s)1{s = s′, a = a′} − πθ(a|s)πθ(a′|s)1{s = s′}.
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Optimization challenge I: Nonconcavity

◦ In general, the objective J(πθ) is nonconcave.

◦ This holds even for tabular setting with direct or softmax parametrization.

a1: move up, a2: move right

Example (direct parametrization)

V π(s1) = π(a2|s1)π(a1|s2)r.

I Consider πmid = π1+π2
2 , where

π1(a2|s1) = 3/4, π1(a1|s2) = 3/4;
π2(a2|s1) = 1/4, π2(a1|s2) = 1/4;
πmid(a2|s1) = 1/2, πmid(a1|s2) = 1/2.

I V π1 (s1) = 9
16 r, V

π2 (s1) = 1
16 r.

I V πmid (s1) = 1
4 r <

1
2 (V π1 (s1) + V π2 (s1)).
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Optimization challenge I: Nonconcavity

◦ In general, the objective J(πθ) is nonconcave.

◦ This holds even for tabular setting with direct or softmax parametrization.

a1: move up, a2: move right

Example (softmax parameterzation)

θ = (θa1,s1 , θa2,s1 , θa1,s2 , θa2,s2 ),

V πθ (s1) =
eθa2,s1

eθa1,s1 + eθa2,s1

eθa1,s2

eθa1,s2 + eθa2,s2
r.

I Consider

θ1 = (log 1, log 3, log 3, log 1),
θ2 = (− log 1,− log 3,− log 3,− log 1),
θmid = (θ1 + θ2)/2 = (0, 0, 0, 0).

I V πθ1 (s1) = 9
16 r, V

πθ2 (s1) = 1
16 r.

I V
πθmid (s1) = 1

4 r <
1
2 (V πθ1 (s1) + V πθ2 (s1)).
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Convergence to stationary points (see Lecture 1)

Convergence of exact policy gradient method: θt+1 = θt + αt∇θJ(πθt) (Nesterov, 2004 [7])
If the objective J(πθ) is L-smooth and set αt = 1

L
, then we have the following guarantee:

min
t=0,...,T−1

‖∇θJ(πθt )‖
2
2 ≤

2L(J(πθ? )− J(πθ0 ))
T

.

Convergence of stochastic policy gradient method: θt+1 = θt + αt∇̂θJ(πθt)
(Ghadimi and Lan, 2013 [3])
If the objective J(πθ) is L-smooth and ∇̂θJ(πθ) is unbiased and has bounded variance by σ2, then with a
proper choice of the step-size, we have the following guarantee:

min
t=0,...,T−1

E
[
‖∇θJ(πθt )‖

2
2
]

= O

(√
L(J(πθ? )− J(πθ0 ))σ2

T

)
.

Questions: Can these rates be further improved? Do stationary points imply good performance?
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Optimization challenge II: Vanishing gradient and saddle points

◦ In general, there are no guarantees on the quality of stationary points.

◦ Vanishing gradients can happen when using softmax parametrization.

◦ Vanishing gradients can happen when lacking sufficient exploration [1].

Figure: Softmax function: eθ

1+eθ
= 1

1+e−θ
.

Figure: Example with H + 2 states and γ = H
H+1 : rewards are

everywhere 0 except at sH+1. For small order p and θ such
that θs,a1 <

1
4 for all s [1]: ‖∇pV πθ (s0)‖ ≤

(
1
3

)H/4
.
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A simple example

Figure: MDP with 2 states and 2 actions

Figure: V π(B) under direct parametrization
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A simple example (cont’d)

Figure: PG with different initial points
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A simple example (cont’d)

Figure: PG with different stepsizes
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Fundamental questions

Question 1
When do policy gradient methods converge to an optimal solution? If so, how fast?

Remarks: ◦ Optimization wisdom: GD/SGD could converge to the global optima for “convex-like” functions:

J(π?)− J(π) = O(‖∇J(π)‖).

◦ Focus on tabular setting with exact gradient.

Question 2
How to avoid vanishing gradients and improve the convergence?

Remarks: ◦ Optimization wisdom: Use divergence with good curvature information.

◦ Switch to natural policy gradient by exploiting geometry.
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Performance difference lemma (PDL)

Performance difference lemma (Kakade and Langford, 2002 [?])
For any two policy π, π′, the following holds

J(π)− J(π′) =
1

1− γ
Es∼λπµ, a∼π(·|s)

[
Aπ
′
(s, a)

]
.

Remarks: ◦ Here λπµ(s) = (1− γ)E[
∑∞

t=0 γ
t1{st=s}|s0 ∼ µ, π] is the state visitation distribution.

◦ Here Aπ(s, a) = Qπ(s, a)− V π(s) is the advantage function.

◦ Can be used to show policy improvement theorem for policy iteration (self-exercise).

◦ Can also be used to show policy gradient theorem (self-exercise).

◦ Proof follows from definition of value functions.
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Proof of performance difference lemma

Derivation: V π(s)− V π
′
(s) = Eτ∼pπ(τ)

[ ∞∑
t=0

γtr(st, at)|s0 = s
]
− V π

′
(s)

= Eτ∼pπ(τ)
[ ∞∑
t=0

γt
(
r(st, at) + V π

′
(st)− V π

′
(st)
)
|s0 = s

]
− V π

′
(s)

= Eτ∼pπ(τ)
[ ∞∑
t=0

γt
(
r(st, at) + γV π

′
(st+1)− V π

′
(st)
)
|s0 = s

]
= Eτ∼pπ(τ)

[ ∞∑
t=0

γt
(
r(st, at) + γEst+1∼P (·|st,at)[V

π′ (st+1)]− V π
′
(st)
)
|s0 = s

]
= Eτ∼pπ(τ)

[ ∞∑
t=0

γt
(
Qπ
′
(st, at)− V π

′
(st)
)
|s0 = s

]
= Eτ∼pπ(τ)

[ ∞∑
t=0

γtAπ
′
(st, at)|s0 = s

]
Remark: ◦ We use a telescoping trick to go from line 2 to line 3!

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 15/ 31



Key insight: Policy optimization is convex-like in the full policy space

◦ Performance difference lemma:

J(π?)− J(π) =
1

1− γ

∑
s

λπ
?

µ (s)
∑
a

π?(a|s)Aπ(s, a).

◦ Policy gradient theorem (tabular setting):

∂J(π)
∂π(a|s)

=
1

1− γ
λπµ(s)Qπ(s, a) (direct parametrization).

∂J(π)
∂π(a|s)

=
1

1− γ
λπµ(s)π(a|s)Aπ(s, a) (softmax parametrization).

◦ This seems to imply gradient dominance type properties:

J(π?)− J(π) = O(‖∇J(π)‖),

which is crucial to ensure global optimality.
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Policy optimization

◦ We first consider the direct parametrization in the tabular setting.

Policy optimization under direct parametrization

max
π∈∆(A)|S|

J(π) := Es∼µ[V π(s)],

where ∆(A)|S| = {π : π(a|s) ≥ 0,
∑

a∈A π(a|s) = 1, ∀s}. For brevity, we denote this set as ∆.

Remarks: ◦ If π ∈ ∆ is optimal, then it satisfies the first-order optimality condition:

〈π̄ − π,∇J(π)〉 ≤ 0, ∀ π̄ ∈ ∆,

or equivalently, maxπ̄∈∆ 〈π̄ − π,∇J(π)〉 = 0.

◦ Does the reverse statement hold?
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Gradient dominance property

Gradient mapping domination

J(π?)− J(π) ≤
∥∥∥λπ?µ
λπµ

∥∥∥
∞
×max
π̄∈∆
〈π̄ − π,∇J(π)〉.

Remarks: ◦ Any first-order stationary point is thus globally optimal.

◦ The term
∥∥∥λπ?µλπµ ∥∥∥∞ is called the distribution mismatch coefficient, which captures the

hardness of the exploration problem. Note that in the aforementioned vanishing gradient
example, this coefficient can be very exponentially large.

◦ Note that maxπ
∥∥∥λπ?µλπµ ∥∥∥∞ ≤ 1

1−γ

∥∥∥λπ?µµ ∥∥∥
∞
, since ∀π, λπµ(s) ≥ (1− γ)µ(s).

◦ Proof follows by combining performance difference lemma and policy gradient theorem.
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Proof of gradient dominance

Derivation: J(π?)− J(π) =
1

1− γ

∑
s

λπ
?

µ (s)
∑
a

π?(a|s)Aπ(s, a)

=
1

1− γ

∑
s

λπ
?

µ (s)
λπµ(s)

λπµ(s)
∑
a

π?(a|s)Aπ(s, a)

≤
1

1− γ

∥∥∥λπ?µ
λπµ

∥∥∥
∞
×max
π̄∈∆

∑
s,a

λπµ(s)π̄(a|s)Aπ(s, a)

=
1

1− γ

∥∥∥λπ?µ
λπµ

∥∥∥
∞
×max
π̄∈∆

∑
s,a

λπµ(s)(π̄(a|s)− π(a|s))Aπ(s, a)

≤
1

1− γ

∥∥∥λπ?µ
λπµ

∥∥∥
∞
×max
π̄∈∆

∑
s,a

λπµ(s)(π̄(a|s)− π(a|s))Qπ(s, a)

=
∥∥∥λπ?µ
λπµ

∥∥∥
∞
×max
π̄∈∆
〈π̄ − π,∇J(π)〉
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Projected policy gradient method

Projected policy gradient method

πt+1 = Π∆(πt + η∇J(πt)),

where the projection is given by Π∆(π) = arg minπ′∈∆ ‖π − π′‖22.

Remarks: ◦ Take a gradient ascent step and project onto the simplex set (can be computed efficiently).

◦ Generalized gradient mapping: G(πt) = 1
η

(πt+1 − πt), or equivalently, πt+1 = πt + ηG(πt).

◦ If π is optimal, then G(π) = 0. (why?)

◦ Convergence on gradient mapping [6]: If J(π) is L-smooth, then we have

min
t≤T
‖G(πt)‖22 ≤

2L(J(π?)− J(π0))
T

.
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Convergence of projected policy gradient method

Theorem (Agarwal et al., 2020 [1])
Assume access to exact gradient. Let η = (1−γ)3

2γ|A| . Then, the following holds

min
t<T

J(π?)− J(πt) ≤
8
√
γ|S||A|

(1− γ)3
√
T

∥∥∥∥λπ?µµ
∥∥∥∥
∞

.

Proof sketch: ◦ Show that the objective J(π) is L-smooth with L = 2γ|A|
(1−γ)3 and J(π) ≤ 1

1−γ .

◦ Invoke convergence on gradient mapping: mint≤T ‖G(πt)‖22 ≤
2L(J(π?)−J(π0))

T
.

◦ Invoke the relationship between gradient mapping and approximation of stationary point [6]:

max
π̄∈∆
〈π̄ − πt+1,∇J(πt+1)〉 ≤ (1 + Lη) · ‖G(πt)‖2 · ‖πt+1 − πt‖2.

◦ Use the gradient dominance for global convergence.
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A closer look at the convergence

Theorem (Agarwal et al., 2020 [1])
Assume access to exact gradient. Let η = (1−γ)3

2γ|A| . Then, the following holds

min
t<T

J(π?)− J(πt) ≤
8
√
γ|S||A|

(1− γ)3
√
T

∥∥∥∥λπ?µµ
∥∥∥∥
∞

.

Remarks: ◦ Large constants in the bound.

◦ Slow rate in T .

◦ Analysis can be refined with improved convergence rate of O
(

1
T

)
using Nesterov’s result in

(Nesterov, 2004 [7]).

◦ But wait, in tabular setting, VI or PI converges linearly, which is much faster.

◦ (New!) Linear convergence of PG can be shown with larger stepsizes (through line-search)
(Bhandari and Russo, 2021 [2]).
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A closer look at the PG method

◦ The projected PG update can also be viewed as

πt+1 := Π∆(πt + η∇J(πt))

= arg max
π∈∆

{
〈∇J(πt), π〉 −

1
2η
‖π − πt‖22

}
.

◦ As η →∞, this reduces to the policy iteration update:

πt+1(·|s) = arg max
π(·|s)∈∆(A)

∑
a

π(s|a)Qπt (s, a).

◦ In other words, policy gradient method can be viewed as an approximation of policy iteration

arg max
π∈∆

{
〈∇J(πt), π〉 −

1
2η
‖π − πt‖22

}
= arg max

π∈∆

{
〈Qπt , π〉λπtµ −

1
2η′
‖π − πt‖22

}
(1)

where ∂J(π)
∂π(a|s) = 1

1−γ λ
π
µ(s)Qπ(s, a) and 〈·, ·〉λπµ is the reweighted inner product by λπµ.
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From gradient descent to mirror descent: Exploiting the non-euclidean geometry

◦ We can adapt PG in the simplex with mirror descent updates:

πt+1 := arg max
π∈∆

{
〈∇J(πt), π〉 −

1
η

∑
s

λπtµ (s)KL (π(·|s)||πt(·|s))

}
,

where KL (p||q) =
∑

i
pi log

(
pi
qi

)
is the Kullback-Leibler divergence.

◦ The policy mirror descent update can be further simplified as

πt+1(a|s) = πt(a|s)
exp(ηQt(s, a)/(1− γ))∑

a′
πt(a′|s) exp(ηQt(s, a′)/(1− γ))

.

◦ This is akin to natural policy gradient under softmax parameterization.

◦ As η →∞, this also reduces to the policy iteration update.
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Policy optimization

◦ We now consider the softmax parametrization in the tabular setting.

Policy optimization under softmax parametrization

max
θ

J(πθ) := Es∼µ[V πθ (s)], where πθ(a|s) =
exp(θs,a)∑
a′

exp(θs,a′ )
.

Softmax policy gradient method

θt+1 = θt + η∇θJ(πθt ), where
∂J(θ)
∂θs,a

=
1

1− γ
λ
πθ
µ (s)πθ(a|s)Aπθ (s, a).
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Gradient dominance and global convergence

Gradient dominance (Mei et al., 2020 [5])

J(π?)− J(πθ) ≤ [min
s
πθ(a?(s)|s)]−1√S ·

∥∥∥∥λπ?µλπθµ
∥∥∥∥
∞

· ‖∇θJ(πθ)‖2.

Convergence of softmax policy gradient (Mei et al., 2020 [5])
Assume access to exact gradient, let η ≤ (1−γ)3

8 . Then, the following holds

J(π?)− J(πθT ) ≤
16|S|

c2(1− γ)5T

∥∥∥∥λπ?µµ
∥∥∥∥2

∞

,

where c = [mins,t πθt (a?(s)|s)]−1 > 0.

Remark: ◦ Proof follows similarly as the tabular setting with slow rate and large constants in the bound.
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Natural policy gradient method (NPG)

Natural policy gradient (Kakade, 2002 [4])

θt+1 = θt + η(Fθt )
†∇J(πθt ),

where
I Fθ is the Fisher information matrix:

Fθ = E
s∼λπθµ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)∇θ log πθ(a|s)>

]
.

I C† is the pseudoinverse of the matrix C.
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NPG under softmax parameterization

◦ Consider πθ(a|s) = exp(θs,a)∑
a′

exp(θs,a′ )
and denote πt = πθt .

NPG parameter update

θt+1 = θt +
η

1− γ
Aπθt .

NPG policy update = policy mirror descent

πt+1(a|s) = πt(a|s)
exp(ηAπt (s, a)/(1− γ))∑

a′
πt(a′|s) exp(ηAπt (s, a′)/(1− γ))

.
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Convergence of NPG

Convergence of NPG with softmax parameterization [1]
Assume access to Aπθ . For any η ≥ (1− γ)2 log |A| and T > 0, we have the following

J(π?)− J(πθT ) ≤
2

(1− γ)2T
.

Remarks: ◦ Dimension-free convergence, no dependence on |A|, |S|.

◦ No dependence on distribution mismatch coefficient.

Questions: Why? What about function approximation setting? Can we further improve the convergence?
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Next week!

◦ Recap on policy gradient methods

◦ Introduction to natural policy gradient method
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