
Additional Exercises on PAC-Learning and VC-Dimension
CS-526 Learning Theory

Short problems

1. [Several correct answers are possible.] Let H = {hθ}θ∈Θ be a hypothesis class such that
VCdim(H) = +∞. Then the set of parameters Θ:

(a) is finite

(b) can be countable

(c) can be uncountable

(d) can be finite, countable or uncountable

2. Consider some hypothesis class H. Which of the following is true? Why or why not?

(a) If |H| is infinite, it is not PAC learnable.

(b) If H is PAC learnable, it has finite VC dimension.

(c) If H is specified by a finite number of parameters, it has finite VC dimension.

(d) If H = H1 ∪ H2, where H1 and H2 are some hypothesis classes that are PAC
learnable, then H is also PAC learnable.

VC dimension of unbiased neurons
Let H = {hα1,α2(x) : α1, α2 ∈ R} with

hα1,α2(x) = I
(

tanh(α1x1 + α2x2) > 0
)

1. What is VCdim(H)? Call your answer d.

2. Show that VCdim(H) ≥ d?

3. Show that VCdim(H) ≤ d?

VC dimension of union
LetH1,H2, . . . ,Hr be hypothesis classes over some fixed domain set X . Let d = maxi VCdim(Hi)
and assume that d > 2.
Prove that:

1. VCdim(
⋃r
i=1Hi) ≤ 4d

log(2)
log
(

2d
log(2)

)
+ 2 log(r)

log(2)
.

Hint: Use Sauer’s lemma for bounding the growth function and the inequality

“Let a ≥ 1 and b > 0. If x ≤ a log(x) + b then x ≤ 4a log(2a) + 2b.”

2. For r = 2 the bound can be strengthen to VCdim(H1 ∪H2) ≤ 2d+ 1.
Hint:

∑k
i=0

(
k
i

)
= 2k

1

Stability implies Generalization
Let S = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a training dataset composed of n i.i.d. samples
drawn fromD. As usual, we denote LD(h) = E(x,y)∼D[l(h(x), y)] and LS(h) = 1

n

∑n
i=1 l(h(xi), yi)

the true and empirical risks of a hypothesis h, respectively. For simplicity, let us denote by
hS the output of a learning algorithm when trained with dataset S.

An important property of learning algorithms is their ability to generalize, i.e., the true
and empirical risks of the output hypothesis should be close in expectation. Formally, we
say that a learning algorithm A ε-generalizes in expectation if

|ES[LS(hS)− LD(hS)]| < ε . (1)

An interesting connection arises when we investigate the stability of a learning algorithm.
Formally, we call a learning algorithm ε-uniformly stable if ∀S, S ′ datasets of size n that
differ in at most one example we have

sup
(x,y)

l(hS(x), y)− l(hS′(x), y) < ε . (2)

Notations: (x1, y1), (x2, y2), . . . , (xn, yn), (x̃1, ỹ1), . . . , (x̃n, ỹn) are 2n independently sampled

training examples. We define S = {(x1, y1), . . . , (xn, yn)}, S̃ = {(x̃1, ỹ1), . . . , (x̃n, ỹn)} and
S(i) = {(x1, y1), . . . , (xi−1, yi−1), (x̃i, ỹi), (xi+1, yi+1), . . . , (xn, yn)}.
Prove that:

1. LD(hS) = ES̃[1
n

∑n
i=1 l(hS(x̃i), ỹi)].

2. ES,S̃[l(hS(x̃i), ỹi)] = ES,S(i) [l(hS(i)(xi), yi)].

3. An ε-uniformly stable learning algorithm ε-generalizes in expectation.

VC dimension of decision trees with binary features
In this problem, we consider the class Hbtree of decision trees with binary features and binary
labels. We have a set of samples x(1), . . . , x(m), where x(i) ∈ {0, 1}d. A decision tree is a
classifier that returns the binary label y for a sample x after performing a series of tests of
the type ”xi = 0?” for 0 ≤ i < d, which are organized in a binary tree-like manner. Nodes
of this tree correspond to the tests and leaves to the returned label values. Note that it is
allowed to return the same label value from both branches.

1. Consider the subclass H1 of trees with a single decision node (see Fig. 1). Show that

VCdimH1 ≤ blog2(d+ 1)c+ 1.

2. Show that
VCdimH1 ≥ blog2(d+ 1)c+ 1.

3. Consider the subclass Hdeg,N of degenerate trees. Now the tree has N decision nodes
but each node except the bottom one has a single child node (see Fig. 2). Prove that

VCdimHdeg,N ≥ blog2(d−N + 2)c+N.

Hint : Start from the case N = 1. What changes when we add another node to the
tree?

yes no

x2 = 0?

y = 0 y = 1

Figure 1: Example of single-node decision tree

yes no

no yes

no yes

x2 = 0?

x3 = 0?

x5 = 0?

y = 0

y = 1

y = 0 y = 1

Figure 2: Example of degenerate tree with N = 3 nodes.

3

