Solution to Exercises on PAC-Learning and VC-Dimension CS-526 Learning Theory

Short problems

- 1. **B** and **C**.The set Θ parametrizing the hypothesis class must be infinite: if \mathcal{H} has finite cardinality then $VCdim(\mathcal{H}) \leq \log |\mathcal{H}|$. In the second graded homework, we studied the hypothesis class $\mathcal{H} = \{\lceil \sin(\theta \pi) \rceil\}_{\theta \in \Theta}$ and proved that it has an infinite VC dimension if $\Theta = \{2n\}_{n \in \mathbb{N}}$ (and by extension $\theta = \mathbb{R}$). Therefore B and C are correct.
- 2. (a) False. If \mathcal{H} has finite VC dimension then it is PAC learnable due to the Fundamental theorem of Statistical learning.
 - (b) True. According to the Fundamental theorem of Statistical learning.
 - (c) False. We saw in the homework that there are hypotheses classes with infinite VC dimension that are specified by a single parameter.
 - (d) True. If $\mathcal{H}_1, \mathcal{H}_2$ have finite VC dimension then the VC dimension of their union is also finite and therefore \mathcal{H} is also PAC learnable.

VC dimension of unbiased neurons

Note that tanh does not change the sign of $\alpha_1 x_1 + \alpha_2 x_2$, so we don't need to bother with the tanh in analysis.

 $\underline{\text{VCdim}(\mathcal{H})} \geq 2$: given any two samples $(\mathbf{x}^{(1)}, y^{(1)})$ and $(\mathbf{x}^{(2)}, y^{(2)})$ with $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ linearly independent, we can find valid α_1, α_2 by solving

$$\begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b^{(1)} \\ b^{(2)} \end{bmatrix}$$

where $b^{(i)}$ is any real numbers that has the same sign with $(-1)^{1+y^{(i)}}$.

 $\underline{\text{VCdim}}(\mathcal{H}) \leq 2$: For any three points $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}$ one can propose $y^{(1)}, y^{(2)}, y^{(3)}$ such that \mathcal{H} does not shatter the 3 points. This amounts to showing that there exists $y^{(1)}, y^{(2)}, y^{(3)}$ such that

$$\begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \mathbf{x}^{(3)} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b^{(1)} \\ b^{(2)} \\ b^{(3)} \end{bmatrix}$$
 (1)

has no solutions, with $b^{(i)}$ as defined above. In \mathbb{R}^2 any three points are linearly dependent. So (1) is degenerated. We can assume $\mathbf{x}^{(3)} = w_1 \mathbf{x}^{(1)} + w_2 \mathbf{x}^{(2)}$ for some $w_1, w_2 \in \mathbb{R}$. Suppose $y^{(1)}, y^{(2)}$ allows a solution of α_1, α_2 for the first two equations of (1). However, if one chooses $y^{(3)}$ such that $\sum_{i=1}^2 \sum_{j=1}^2 w_i \alpha_j x_j^{(i)}$ has a different sign from $(-1)^{1+y^{(3)}}$, then (1) has no solution.

VC dimension of union

1. Let $\mathcal{H} = \bigcup_{i=1}^r \mathcal{H}_i$. By definition of the growth function we have $\tau_{\mathcal{H}}(m) \leq \sum_{i=1}^r \tau_{\mathcal{H}_i}(m)$ for any set of m points. If k > d+1 points are shattered by \mathcal{H} then $2^k = \tau_{\mathcal{H}}(k) \leq \sum_{i=1}^r \tau_{\mathcal{H}_i}(k) \leq rk^d$, where the last inequality follows directly from Sauer's lemma. Taking the logarithm on both sides and using the inequality yields

$$k \le \frac{4d}{\log(2)} \log \left(\frac{2d}{\log(2)} \right) + 2 \frac{\log(r)}{\log(2)} .$$

Note that this inequality is trivially satisfied if $k \leq d+1$.

2. Assume that $k \geq 2d+2$. It is enough to prove that $\tau_{\mathcal{H}_1 \cup \mathcal{H}_2}(k) < 2^k$.

$$\tau_{\mathcal{H}_1 \cup \mathcal{H}_2}(k) \le \tau_{\mathcal{H}_1}(k) + \tau_{\mathcal{H}_2}(k) \le \sum_{i=0}^d \binom{k}{i} + \sum_{i=0}^d \binom{k}{i} =$$

$$= \sum_{i=0}^d \binom{k}{i} + \sum_{i=0}^d \binom{k}{k-i} = \sum_{i=0}^d \binom{k}{i} + \sum_{i=k-d}^k \binom{k}{i} \le$$

$$\le \sum_{i=0}^d \binom{k}{i} + \sum_{i=d+2}^k \binom{k}{i} < \sum_{i=0}^d \binom{k}{i} + \sum_{i=d+1}^k \binom{k}{i} =$$

$$= \sum_{i=0}^k \binom{k}{i} = 2^k$$

Lemma (Sauer-Shelah-Perles) Let \mathcal{H} be a hypothesis class with $VCdim(H) \leq d < \infty$ and growth function $\tau_{\mathcal{H}}$. Then, for all m, $\tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} {m \choose i}$. In particular, if m > d+1 and d > 2 then $\tau_{\mathcal{H}}(m) < m^d$.

Stability implies Generalization

1. Note that since \tilde{S} is composed of n i.i.d. samples $L_{\mathcal{D}}(h_S) = E_{(\tilde{x_i}, \tilde{y_i}) \sim \mathcal{D}}[l(h_S(\tilde{x_i}), \tilde{y_i})]$ for all i. Thus, by linearity of expectation $L_{\mathcal{D}}(h_S) = E_{\tilde{S}}[\frac{1}{n}\sum_{i=1}^n l(h_S(\tilde{x_i}), \tilde{y_i})]$.

2.

$$E_{S,\tilde{S}}[l(h_S(\tilde{x}_i), \tilde{y}_i)] = E_{S,(\tilde{x}_i, \tilde{y}_i)}[l(h_S(\tilde{x}_i), \tilde{y}_i)] =$$

$$(since (x_1, y_1), \dots, (x_n, y_n), (\tilde{x}_i, \tilde{y}_i) \text{ are } i.i.d. \text{ we can interchange } (x_i, y_i) \text{ with } (\tilde{x}_i, \tilde{y}_i))$$

$$= E_{S^{(i)},(x_i,y_i)}[l(h_{S^{(i)}}(x_i), y_i)]$$

$$\begin{split} &|E_{S}[L_{S}(h_{S})-L_{\mathcal{D}}(h_{S})]| \stackrel{(1)}{=} |E_{S}\left[L_{S}(h_{S})-E_{\tilde{S}}\left[\frac{1}{n}\sum_{i=1}^{n}l(h_{S}(\tilde{x}_{i}),\tilde{y}_{i})\right]\right]| = \\ &= |E_{S}\left[L_{S}(h_{S})\right]-E_{S,\tilde{S}}\left[\frac{1}{n}\sum_{i=1}^{n}l(h_{S}(\tilde{x}_{i}),\tilde{y}_{i})\right]| = \\ &= |E_{S}\left[L_{S}(h_{S})\right]-\frac{1}{n}\sum_{i=1}^{n}E_{S,\tilde{S}}\left[l(h_{S}(\tilde{x}_{i}),\tilde{y}_{i})\right]| \stackrel{(2)}{=} \\ &= |E_{S}\left[L_{S}(h_{S})\right]-\frac{1}{n}\sum_{i=1}^{n}E_{S,\tilde{S}}\left[l(h_{S}(\tilde{x}_{i}),\tilde{y}_{i})\right]| = \\ &= |E_{S}\left[\frac{1}{n}\sum_{i=1}^{n}l(h_{S}(x_{i}),y_{i})\right]-\frac{1}{n}\sum_{i=1}^{n}E_{S,S^{(i)}}\left[l(h_{S^{(i)}}(x_{i}),y_{i})\right]| = \\ &= |\frac{1}{n}\sum_{i=1}^{n}E_{S,S^{(i)}}\left[l(h_{S}(x_{i}),y_{i}))-l(h_{S^{(i)}}(x_{i}),y_{i})\right]| \stackrel{(\epsilon\text{-uniform stability})}{\leq} \\ &\leq \frac{1}{n}\sum_{i=1}^{n}\epsilon = \epsilon \end{split}$$

VC dimension of decision trees with binary features

1. For each feature i, there exist two trivial decision trees (that both return zero or both return one) and two non-trivial ones (the one that returns 0 if $x_i = 1$ and 1 otherwise and the one that returns 1 if $x_i = 1$ and 0 otherwise). Therefore, with d features we can have at most 2d + 2 distinct labelings. In order to shatter m samples, we need to obtain all 2^m possible labelings, hence we have the bound

$$2d + 2 > 2^m$$
.

Resolving for m we get the stated upper bound.

- 2. To prove the lower bound, we need to construct the set of $m = \lfloor \log_2(d+1) \rfloor + 1$ samples that is shattered. To do this, take the set of all possible labelings except all-zero and all-one and for each labeling (y_1, \ldots, y_m) remove its complement from the set. This leaves $2^{m-1} 1$ distinct labelings $y^{(i)}$. Now we create the samples $x^{(1)}, \ldots, x^{(m)}$ s.t. $x_i^{(j)} = y_j^{(i)}$ for $1 \le j \le m, 1 \le i \le 2^{m-1} 1 = d$. It remains to notice that a tree with node $x_i = 0$? gives either the labeling $y^{(i)}$ or its complement (if we reverse the labels on branches) and in addition all-one and all-zero labelings if both branches return the same label, which completes the proof.
- 3. We need to construct the set of $m = \lfloor \log_2(d-N+2) \rfloor + N$ samples on which we get all 2^m possible labels. We start from the case of one bottom node, with $d = 2^{m-1} 1$ features for m samples. Now assume we get an extra feature x_{d+1} and an extra sample s.t. $x_{d+1}^{(m+1)} = 1$ and $x_i^{(m+1)} = 0$ for $i \neq d+1$ ($x_{d+1}^{(i)} = 0$ for i < m+1). We create a parent node that contains the existing node and our new sample as children and the splitting rule is the new feature. The new splitting rule allows to label $x^{(m+1)}$ independently of other $x^{(i)}$, so we get all possible labelings on m+1 samples. This procedure can be performed N-1 times since we have N decision nodes in the tree. Therefore, for m samples we have $d=2^{m-1-(N-1)}-1+(N-1)=2^{m-N}+N-2$ features that generate all 2^m possible labelings.